• International Journal of Technology (IJTech)
  • Vol 17, No 1 (2026)

Usability, Humanization, and Perceived Service are Predictors of Customer Satisfaction in Chatbot Interactions

Usability, Humanization, and Perceived Service are Predictors of Customer Satisfaction in Chatbot Interactions

Title: Usability, Humanization, and Perceived Service are Predictors of Customer Satisfaction in Chatbot Interactions
Yezid Alfonso Cancino Gomez, Lugo Manuel Barbosa Guerrero, Jairo Jamith Palacios Rozo

Corresponding email:


Cite this article as:
Cancino-G´omez, Y. A., Barbosa-Guerrero, L. M., & Palacios-Rozo, J. J. (2026). Usability, humanization, and perceived service are predictors of customer satisfaction in chatbot interactions. International Journal of Technology, 17 (1), 120–130


13
Downloads
Yezid Alfonso Cancino Gomez Department of Marketing and advertisement, Faculty of Economics and Business Science, Universidad ECCI Cra.19 No. 49-20, Bogota, Colombia 111311
Lugo Manuel Barbosa Guerrero Department of Business Administration, Universidad Colegio Mayor de Cundinamarca Cra. 5 #28-85, Bogota, Colombia 110311
Jairo Jamith Palacios Rozo Department of Business Administration, Universidad Colegio Mayor de Cundinamarca Cra. 5 #28-85, Bogota, Colombia 110311
Email to Corresponding Author

Abstract
Usability, Humanization, and Perceived Service are Predictors of Customer Satisfaction in Chatbot Interactions

Companies’ online presence has driven the use of chatbots in digital channels as a solution to expand customer service. These systems make it possible to offer satisfying experiences and handle requests on a large scale. Even when adopting this technology, companies must regularly assess whether these solutions increase or maintain customer satisfaction levels. This study analyzed the factors of humanization H, usability US, and perceived service quality QS in customer satisfaction when interacting with chatbots. Causal research is used to evaluate the relationships between the aforementioned factors and customer satisfaction using structural equation modeling (SEM). To this end, 423 people aged between 25 and 40 years were surveyed. The results confirm the five study hypotheses, establishing that H, US, and QS strongly, positively, and significantly influence user satisfaction when interacting with AI-driven chatbots. The study concludes that these factors are important in predicting customer satisfaction with online chatbots and that chatbot systems must be designed to generate satisfaction in terms of service quality and interaction. This study contributes a new understanding of the combined effect of the three factors by integrating them into a single model to explain satisfaction with online chatbot services.

AI-Driven chatbot; Anthropomorphism; Customer satisfaction; Chatbot usability; Perceived service quality

References

Araujo, T. (2018). Living up to the chatbot hype: The influence of anthropomorphic design cues and communicative agency framing on conversational agent and company perceptions. Computers in Human Behavior, 85, 183–189. https://doi.org/10.1016/j.chb.2018.03.051

Aslam, U. (2023). Understanding the usability of retail fashion brand chatbots: Evidence from customer expectations and experiences. Journal of Retailing and Consumer Services, 74, 103377. https://doi.org/10.1016/j.jretconser.2023.103377

Bagozzi, R. P., Yi, Y., & Nassen, K. D. (1998). Representation of measurement error in marketing variables: Review of approaches and extension to three-facet designs. Journal of Econometrics, 89(1–2), 393–421. https://doi.org/10.1016/S0304-4076(98)00068-2

Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588–606. https://doi.org/10.1037/0033-2909.88.3.588

Brown, T. A. (2015). Confirmatory factor analysis for applied research (2nd ed.). Guilford Press.

Browne, M. W., Cudeck, R., Bollen, K. A., & Long, J. S. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136–162). SAGE.

Chavez, S. V. B., & Revolledo, T. C. M. (2018). Calidad del servicio y satisfacción del cliente de la empresa Alpecorp S.A. Revista de Investigación Valor Agregado, 5(1), 22–39.

Chen, C. F. Y., Chan, T. J., & Hashim, N. H. (2023). Factors influencing continuation intention of using fintech from the users’ perspectives: Testing of unified theory of acceptance and use of technology (UTAUT2). International Journal of Technology, 14(6), 1277–1287. https://doi.org/10.14716/ijtech.v14i6.6636

Chen, J. S., Le, T. T. Y., & Florence, D. (2021). Usability and responsiveness of artificial intelligence chatbot on online customer experience in e-retailing. International Journal of Retail & Distribution Management, 49(11), 1512–1531. https://doi.org/10.1108/IJRDM-08-2020-0312

Cheng, Y., & Jiang, H. (2020). How do AI-driven chatbots impact user experience? Examining gratifications, perceived privacy risk, satisfaction, loyalty, and continued use. Journal of Broadcasting & Electronic Media, 64(4), 592–614. https://doi.org/10.1080/08838151.2020.1834296

Chih, W. H., Wang, K. Y., & Banda, H. W. (2025). Chatbots at the frontline: Unveiling antecedents of customers’ willingness to accept chatbot intervention in service recovery. Journal of Retailing and Consumer Services, 84, 104254. https://doi.org/10.1016/j.jretconser.2025.104254

Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). SAGE.

Davila-Moran, R. C., & Aguero-Corzo, E. C. (2023). Evaluación cuantitativa de la satisfacción del cliente luego de la implementación de un sistema de atención basado en chatbot. Revista Conrado, 19(S2), 418–430.

de Sa Siqueira, M. A., Muller, B. C., & Bosse, T. (2023). When do we accept mistakes from chatbots? The impact of human-like communication on user experience in chatbots that make mistakes. International Journal of Human–Computer Interaction, 39(12), 1–11. https://doi.org/10.1080/10447318.2023.2175158

El Bakkouri, B., Raki, S., & Belgnaoui, T. (2022). The role of chatbots in enhancing customer experience: Literature review. Procedia Computer Science, 203, 432–437. https://doi.org/10.1016/j.procs.2022.07.057

Eren, B. A. (2021). Determinants of customer satisfaction in chatbot use: Evidence from a banking application in Turkey. International Journal of Bank Marketing, 39(2), 294–311. https://doi.org/10.1108/IJBM-02-2020-0056

Esmaeili, A., Haghgoo, I., Davidaviciene, V., & Meidute Kavaliauskiene, I. (2021). Customer loyalty in mobile banking: Evaluation of perceived risk, relative advantages, and usability factors. Engineering Economics, 32(1), 70–81. https://doi.org/10.5755/j01.ee.32.1.25286

Folstad, A., & Brandtzaeg, P. (2020). Users’ experiences with chatbots: Findings from a questionnaire study. Quality and User Experience, 5(1), 1–14. https://doi.org/10.1007/s41233-020-00033-2

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.1177/002224378101800104

Go, E., & Sundar, S. S. (2019). Humanizing chatbots: The effects of visual, identity, and conversational cues on humanness perceptions. Computers in Human Behavior, 97, 304–316. https://doi.org/10.1016/j.chb.2019.01.020

Gul, S., Zulfiqar, B., Khan, F., Jabeen, N., & Fareed, G. (2025). Impact of AI-powered chatbots on customer retention: Moderating role of service quality perception. Journal of Management Science Research Review, 4(1), 100–117.

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2019). A primer on structural equation modeling (PLS-SEM) (2nd ed.). SAGE Publications.

Hair, J. F., Matthews, L. M., Matthews, R. L., & Sarstedt, M. (2021). PLS-SEM or CB-SEM: Updated guidelines on which method to use. International Journal of Multivariate Data Analysis, 5(2), 107–123. https://doi.org/10.1504/IJMDA.2021.115932

Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management & Data Systems, 116(1), 2–20. https://doi.org/10.1108/IMDS-09-2015-038

Hernández Sampieri, R., & Mendoza, C. (2018). Metodología de la investigación: Las rutas cuantitativa, cualitativa y mixta. McGraw-Hill.

Hsu, C. L., & Lin, J. C. C. (2023). Understanding the user satisfaction and loyalty of customer service chatbots. Journal of Retailing and Consumer Services, 71, 103211. https://doi.org/10.1016/j.jretconser.2022.103211

Huang, D., Markovitch, D. G., & Stough, R. A. (2024). Can chatbot customer service match human service agents on customer satisfaction? An investigation into the role of trust. Journal of Retailing and Consumer Services, 76, 103600. https://doi.org/10.1016/j.jretconser.2023.103600

ISO/IEC. (2010). Systems and software engineering – Systems and software quality requirements and evaluation (SQuaRE) – System and software quality models (Technical Report No. ISO/IEC 25010:2010). International Organization for Standardization.

Jain, M., Kumar, P., Kota, R., & Patel, S. N. (2018). Evaluating and informing the design of chatbots. Proceedings of the Designing Interactive Systems Conference, 895–906.

Kerlinger, F. N., & Lee, H. B. (2002). Foundations of behavioral research (4th ed.). Harcourt College Publishers.

Klein, K., & Martinez, L. F. (2023). The impact of anthropomorphism on customer satisfaction in chatbot commerce: An experimental study in the food sector. Electronic Commerce Research, 23(4), 2789–2825. https://doi.org/10.1007/s10660-022-09562-8

Kline, R. B. (2016). Principles and practice of structural equation modeling (4th ed.). Guilford Press.

Knuvers, M., & van Miltenburg, E. (2021). Predicting consumers’ satisfaction toward chatbot experiences: The influence of pragmatic and hedonic design factors (Master’s thesis, Tilburg University).

Lohr, S. L. (2019). Sampling: Design and analysis (2nd ed.). Chapman & Hall/CRC.

Ltifi, M. (2023). Trust in the chatbot: A semi-human relationship. Future Business Journal, 9(1), 109. https://doi.org/10.1186/s43093-023-00288-z

Lubbe, I., & Ngoma, N. (2021). Useful chatbot experience provides technological satisfaction: An emerging market perspective. South African Journal of Information Management, 23(1), 1–8. https://doi.org/10.4102/sajim.v23i1.1299

Masrianto, A., Hartoyo, H., Hubeis, A. V. S., & Hasanah, N. (2024). How to boost your firm’s digital marketing capability. International Journal of Technology, 15(3), 677–686. https://doi.org/10.14716/ijtech.v15i3.5691

Moliner, B., Gil, I., & Ruiz, M. (2014). Determinantes de la lealtad de empresas turísticas según la heterogeneidad de los segmentos. Papers de Turisme, 55(1), 1–23.

Mulyono, J. A., & Sfenrianto, S. (2022). Evaluation of customer satisfaction on Indonesian banking chatbot services during the COVID-19 pandemic. CommIT Journal, 16(1). https://doi.org/10.21512/commit.v16i1.7813

Núñez-Tobías, L. N., & Juárez-Mancilla, J. (2018). Análisis comparativo de modelos de evaluación de calidad en el servicio a partir de sus dimensiones y su relación con la satisfacción del cliente. 3C Empresa: Investigación y Pensamiento Crítico, 7(1), 49–59. https://doi.org/10.17993/3cemp.2018.070133.49-59

Oliver, R. L. (2014). Satisfaction: A behavioral perspective on the consumer (2nd ed.). Routledge.

Parera, N. O., & Susanti, E. (2021). Customer loyalty based on mobile banking usability. International Journal of Digital Entrepreneurship and Business, 2(1), 39–48. https://doi.org/10.52238/ideb.v2i1.37

Perez-Gil, J. A., Chacón-Moscoso, S., & Moreno-Rodríguez, R. (2000). Construct validity: The use of exploratory–confirmatory factor analysis to obtain evidence of validity. Psicothema, 12(Supplement), 442–446.

Petre, M., Minocha, S., & Roberts, D. (2006). Usability beyond the website: An empirically grounded e-commerce evaluation instrument for the total customer experience. Behaviour & Information Technology, 25(2), 189–203. https://doi.org/10.1080/01449290500331198

Ramasamy, G., Ramasamy, G. D., & Ramasamy, P. (2024). Conceptual review of consumer satisfaction theories with expectation-confirmation and disconfirmation paradigm for business sustainable growth and decision making. F1000Research, 13, 1399.

Rapp, A., Curti, L., & Boldi, A. (2021). The human side of human–chatbot interaction: A systematic literature review of ten years of research on text-based chatbots. International Journal of Human-Computer Studies, 151, 102630. https://doi.org/10.1016/j.ijhcs.2021.102630

Ren, R., Zapata, M., Castro, J. W., Dieste, O., & Acuña, S. T. (2022). Experimentation for chatbot usability evaluation: A secondary study. IEEE Access, 10, 12430–12464. https://doi.org/10.1109/ACCESS.2022.3147099

Sands, S., Ferraro, C., Campbell, C., & Tsao, H. Y. (2021). Managing the human–chatbot divide: How service scripts influence service experience. Journal of Service Management, 32(2), 246–264. https://doi.org/10.1108/JOSM-06-2019-0203

Sanny, L., Susastra, A. C., Roberts, C., & Yusramdaleni, R. (2020). The analysis of customer satisfaction factors which influence chatbot acceptance in Indonesia. Management Science Letters, 10(6), 1225–1232. https://doi.org/10.5267/j.msl.2019.11.036

Silva-Treviño, J. G., Macías-Hernández, B. A., Tello-Leal, E., & Delgado-Rivas, J. G. (2021). La relación entre la calidad en el servicio, satisfacción del cliente y lealtad del cliente: Un estudio de caso de una empresa comercial en México. CienciaUAT, 15(2), 85–101. https://doi.org/10.29059/cienciauat.v15i2.1369

Smestad, T. L., & Volden, F. (2019). Chatbot personalities matter. In Internet Science (Vol. 11551, pp. 170–181). Springer. https://doi.org/10.1007/978-3-030-17705-8_15

Smutny, P., & Schreiberova, P. (2020). Chatbots for learning: A review of educational chatbots for the Facebook Messenger. Computers & Education, 151, 103862. https://doi.org/10.1016/j.compedu.2020.103862

Taule, T., Folstad, A., & Fostervold, K. I. (2022). How can a chatbot support human resource management? Exploring the operational interplay. In Chatbot Research and Design (Vol. 13171). Springer. https://doi.org/10.1007/978-3-030-94890-0_5

Thakur, R. (2014). What keeps mobile banking customers loyal? International Journal of Bank Marketing, 32(7), 628–646. https://doi.org/10.1108/IJBM-07-2013-0062

Trivedi, J. (2019). Examining the customer experience of using banking chatbots and its impact on brand love: The moderating role of perceived risk. Journal of Internet Commerce, 18(1), 91–111. https://doi.org/10.1080/15332861.2019.1567188

Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38(1), 1–10. https://doi.org/10.1007/BF02291170

Whulanza, Y., Kusrini, E., Sangaiah, A. K., Hermansyah, H., Sahlan, M., Asvial, M., & Fitri, I. R. (2024). Bridging human and machine cognition: Advances in brain–machine interface and reverse engineering the brain. International Journal of Technology, 15(5), 1194–1202. https://doi.org/10.14716/ijtech.v15i5.7297

Zhang, R. W., Liang, X., & Wu, S. H. (2024). When chatbots fail: Exploring user coping following a chatbot-induced service failure. Information Technology & People, 37(8), 175–195. https://doi.org/10.1108/ITP-08-2023-0745