Published at : 28 Jan 2026
Volume : IJtech
Vol 17, No 1 (2026)
DOI : https://doi.org/10.14716/ijtech.v17i1.8007
| Israa S. Abed | 1. Department of Biomedical Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, 10071, Baghdad, Iraq 2. Biomedical Engineering Program, Faculty of Engineering, Mansoura Universit |
| Abeer Twakol Khalil | Electronics and Communications Engineering Department, Faculty of Engineering, Mansoura University, 35516, Mansoura, Egypt |
| Hanan M. Amer | Electronics and Communications Engineering Department, Faculty of Engineering, Mansoura University, 35516, Mansoura, Egypt |
| Samer Mahmoud Mohamed Ali | Orthopedic Surgery Department, Faculty of Medicine, Mansoura University, 35516, Mansoura, Egypt |
| Mohamed Maher Ata | School of Computational Sciences and Artificial Intelligence (CSAI), Zewail City of Science and Technology, 12578, Giza, Egypt |
Osteoarthritis (OA) is a widespread degenerative condition affecting millions of people worldwide. Early detection and precise classification are crucial for effective disease management. This study investigated the use of deep learning techniques to classify the severity of knee OA from X-ray images, specifically targeting three categories: Normal (KL Grade 0), Moderate (KL Grade 3), and Severe (KL Grade 4). We utilized a dataset from the Osteoarthritis Initiative (OAI), containing 3,221 X-ray images of the knee, and fine-tuned eight pretrained CNNs (DenseNet201, EfficientNetB7, InceptionV3, InceptionResNetV2, ResNet50V2, ResNet152V2, Vision Transformer B32, and Xception). A custom CNN and ensemble deep learning models (hard and weighted voting) were also proposed with a total of 11 models. The models were assessed using a dataset split of 70% for training, 15% for validation, and 15% for testing, ensuring comprehensive evaluation across all development stages. DenseNet201 achieved the highest classification accuracy of 97.11% among the individual models, while Vision Transformer B32 showed the lowest accuracy of 59.38%. Ensemble methods using hard and weighted voting, incorporating the top five models, achieved a consistent accuracy of 97.11%. These results demonstrate the potential of deep learning, particularly ensemble strategies, in accurately classifying knee OA severity. This method can help build smarter tools that assist doctors in making better decisions, aiding in the early detection and management of OA, offering a robust tool for improving patient outcomes.
Classification; Deep Learning; Ensemble Methods; Knee X-ray; Osteoarthritis
Ahmed, R., & Imran, A. S. (2024).
Knee osteoarthritis analysis using deep learning and XAI on X-rays. IEEE
Access, 12, 68870–68879. https://doi.org/10.1109/ACCESS.2024.3400987
Alshamrani, H. A., Rashid, M.,
Alshamrani, S. S., & Alshehri, A. H. D. (2023). Osteo-Net: An automated
system for predicting knee osteoarthritis from X-ray images using
transfer-learning-based neural networks approach. Healthcare, 11(9). https://doi.org/10.3390/healthcare11091206
Belagatti, P. (2024). Understanding
the softmax activation function: A comprehensive guide [SingleStore Blog]. https://www.singlestore.com/blog/a-guide-to-softmax-activation-function/
Bhandari, A. (2020). AUC-ROC curve in
machine learning clearly explained [Online article].
Borawar, L., & Kaur, R. (2023).
ResNet: Solving vanishing gradient in deep networks. In Lecture Notes in
Networks and Systems (Vol. 600, pp. 235–247). https://doi.org/10.1007/978-981-19-8825-7_21
Chauhan, R., Ghanshala, K. K., & Joshi, R. C. (2018). Convolutional
neural network (CNN) for image detection and recognition. Proceedings of the
International Conference on Secure Cyber Computing and Communications (ICSCCC),
278–282. https://doi.org/10.1109/ICSCCC.2018.8703316
Chen, P. (2018). Knee osteoarthritis
severity grading dataset. Mendeley Data.
Demir, A., & Yilmaz, F. (2020).
Inception-ResNet-v2 with LeakyReLU and average pooling for more reliable and
accurate classification of chest X-ray images. TIPTEKNO 2020 Medical
Technologies Congress. https://doi.org/10.1109/TIPTEKNO50054.2020.9299232
DenseNets, F., Background, I., &
What, M. (2021). Understanding and visualizing DenseNets [Technical
article].
Duklan, N., Kumar, S., Maheshwari, H.,
Singh, R., Sharma, S. D., & Swami, S. (2024). CNN architectures for image
classification: A comparative study using ResNet50V2, ResNet152V2, InceptionV3,
Xception, and MobileNetV2. SSRG International Journal of Electronics and
Communication Engineering, 11(9), 11–21. https://doi.org/10.14445/23488549/IJECE-V11I9P102
Fajarani, R., Rahman, S. F., Pangesty, A. I., Katili, P. A., Park, D. H.,
& Basari. (2024). Physical and chemical characterization of
collagen/alginate/poly(vinyl alcohol) scaffold with the addition of
multi-walled carbon nanotube, reduced graphene oxide, titanium dioxide, and
zinc oxide materials. International Journal of Technology, 15(2),
332–341. https://doi.org/10.14716/ijtech.v15i2.6693
Foti, G., & Longo, C. (2024). Deep
learning and AI in reducing magnetic resonance imaging scanning time:
Advantages and pitfalls in clinical practice. Polish Journal of Radiology,
89, 443–451. https://doi.org/10.5114/pjr/192822
Ganaie, M. A., Hu, M., Malik, A. K.,
Tanveer, M., & Suganthan, P. N. (2022). Ensemble deep learning: A review. Engineering
Applications of Artificial Intelligence, 115, 105151. https://doi.org/10.1016/j.engappai.2022.105151
Ganesh Kumar, M., & Goswami, A. D.
(2023). Automatic classification of the severity of knee osteoarthritis using
enhanced image sharpening and CNN. Applied Sciences, 13(3). https://doi.org/10.3390/app13031658
Han, K., Wang, Y., Chen, H., Chen, X.,
Guo, J., Liu, Z., Tang, Y., Xiao, A., Xu, C., Xu, Y., Yang, Z., Zhang, Y.,
& Tao, D. (2023). A survey on vision transformer. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(1), 87–110. https://doi.org/10.1109/TPAMI.2022.3152247
Hossin, M., & bin Sulaiman, M. N. (2015). A review on evaluation
metrics for data classification evaluations. International Journal of Data
Mining and Knowledge Management Process, 5, 1–11. https://doi.org/10.5121/ijdkp.2015.5201
Kaur, P., Kohli, G. S., Bedi, J., & Wasly, S. (2024). A novel
deep learning approach for automated grading of knee osteoarthritis severity. Multimedia
Tools and Applications. https://doi.org/10.1007/s11042-024-20322-8
Keith Sinusas, M. (2012). Osteoarthritis:
Diagnosis and treatment. American Family Physician, 85(1), 49–56.
Kingma, D. P., & Ba, J. L. (2015).
Adam: A method for stochastic optimization. International Conference on
Learning Representations, 1–15.
Kondal, S., Kulkarni, V., Gaikwad, A.,
Kharat, A., & Pant, A. (2022). Automatic grading of knee osteoarthritis on
the Kellgren–Lawrence scale from radiographs using convolutional neural
networks. In Lecture Notes in Networks and Systems (Vol. 249, pp.
163–173). https://doi.org/10.1007/978-3-030-85365-5_16
Koonce, B. (2021). ResNet-50. In Convolutional
neural networks with Swift for TensorFlow (pp. 63–72). https://doi.org/10.1007/978-1-4842-6168-2_6
Mlsna, P. A., & Rodriguez, J. J.
(2009). Gradient and Laplacian edge detection. In The essential guide to
image processing (pp. 495–524). https://doi.org/10.1016/B978-0-12-374457-9.00019-6
National Institutes of Health. (2012). Osteoarthritis
Initiative (OAI) dataset. https://nda.nih.gov/oai
Olsson, S., Akbarian, E., Lind, A.,
Razavian, A. S., & Gordon, M. (2021). Automating classification of
osteoarthritis according to Kellgren–Lawrence in the knee using deep learning
in an unfiltered adult population. BMC Musculoskeletal Disorders, 22(1),
1–8. https://doi.org/10.1186/s12891-021-04722-7
Ou, J., Zhang, J., Alswadeh, M., Zhu, Z.,
Tang, J., Sang, H., & Lu, K. (2025). Advancing osteoarthritis research: The
role of AI in clinical, imaging, and omics fields. Bone Research, 13(1).
https://doi.org/10.1038/s41413-025-00423-2
Patro, S. G. K., & Sahu, K. K.
(2015). Normalization: A preprocessing stage. IARJSET, 20–22. https://doi.org/10.17148/iarjset.2015.2305
Ranftl, R., Bochkovskiy, A., &
Koltun, V. (2021). Vision transformers for dense prediction. Proceedings of
the IEEE International Conference on Computer Vision, 12159–12168. https://doi.org/10.1109/ICCV48922.2021.01196
Rani, S., Memoria, M., Almogren, A.,
Bharany, S., Joshi, K., Altameem, A., Rehman, A. U., & Hamam, H. (2024).
Deep learning to combat knee osteoarthritis and severity assessment by using
CNN-based classification. BMC
Musculoskeletal Disorders, 25(1). https://doi.org/10.1186/s12891-024-07942-9
Sarvamangala, D. R., & Kulkarni, R. V. (2021). Grading of knee
osteoarthritis using convolutional neural networks. Neural Processing
Letters, 53(4), 2985–3009. https://doi.org/10.1007/s11063-021-10529-3
Sharma, R., & Kamra, A. (2023). A
review on CLAHE-based enhancement techniques. Proceedings of the
International Conference on Contemporary Computing and Informatics (IC3I),
321–325. https://doi.org/10.1109/IC3I59117.2023.10397722
Tan, M., & Le, Q. V. (2019).
EfficientNet: Rethinking model scaling for convolutional neural networks. Proceedings
of the International Conference on Machine Learning, 10691–10700.
Tariq, T., Suhail, Z., & Nawaz, Z.
(2025). A review for automated classification of knee osteoarthritis using KL
grading scheme for X-rays. Biomedical Engineering Letters, 15(1). https://doi.org/10.1007/s13534-024-00437-5
Touahema, S., Zaimi, I., Zrira, N.,
Ngote, M. N., Doulhousne, H., & Aouial, M. (2024). Med-Knee: A new deep
learning-based software for automated prediction of radiographic knee
osteoarthritis. Diagnostics, 14(10). https://doi.org/10.3390/diagnostics14100993
Vorontsov, I. E., Kulakovskiy, I. V.,
& Makeev, V. J. (2013). Jaccard index-based similarity measure to compare
transcription factor binding site models. Algorithms for Molecular Biology,
8(1). https://doi.org/10.1186/1748-7188-8-23
Wing, N., Van Zyl, N., Wing, M.,
Corrigan, R., Loch, A., & Wall, C. (2021). Reliability of three
radiographic classification systems for knee osteoarthritis among observers of
different experience levels. Skeletal
Radiology, 50(2),
399–405. https://doi.org/10.1007/s00256-020-03551-4
Xie, X., Zhang, K., Li, Y., Li, Y., Li, X., Lin, Y., Huang, L., & Tian,
G. (2025). Global, regional, and national burden of osteoarthritis from
1990 to 2021 and projections to 2035: A cross-sectional study for the Global
Burden of Disease Study 2021. PLOS
One, 20(5). https://doi.org/10.1371/journal.pone.0324296
Xin Teoh, Y., Othmani, A., Li Goh, S., Usman, J., & Lai, K. W. (2024). Deciphering
knee osteoarthritis diagnostic features with explainable artificial
intelligence: A systematic review. IEEE Access, 12, 109080–109108.
https://doi.org/10.1109/ACCESS.2024.3439096
Yong, C. W., Teo, K., Murphy, B. P., Hum,
Y. C., Tee, Y. K., Xia, K., & Lai, K. W. (2022). Knee osteoarthritis
severity classification with ordinal regression module. Multimedia Tools and
Applications, 81(29), 41497–41509. https://doi.org/10.1007/s11042-021-10557-0
Yoon, J. S., Yon, C. J., Lee, D., Lee, J. J., Kang, C. H., Kang, S. B.,
Lee, N. K., & Chang, C. B. (2023). Assessment of a novel deep
learning-based software developed for automatic feature extraction and grading
of radiographic knee osteoarthritis. BMC Musculoskeletal Disorders, 24(1),
1–10. https://doi.org/10.1186/s12891-023-06951-4
Zhang, D., Dong, Y., Xu, Y., Qian, J.,
Ye, M., Yuan, Q., & Luo, J. (2024). Enhancing knee osteoarthritis diagnosis
with DMS: A novel dense multi-scale convolutional neural network approach. Journal
of Orthopaedic Surgery and Research, 19(1), 1–9. https://doi.org/10.1186/s13018-024-05352-0
Zhao, H., Ou, L., Zhang, Z., Zhang, L.,
Liu, K., & Kuang, J. (2025). The value of deep learning-based X-ray
techniques in detecting and classifying KL grades of knee osteoarthritis: A
systematic review and meta-analysis. European Radiology, 35(1), 327–340.
https://doi.org/10.1007/s00330-024-10928-9
Zhu, Y., & Newsam, S. (2018). DenseNet for dense flow. Proceedings of the International Conference on Image Processing (ICIP), 790–794. https://doi.org/10.1109/ICIP.2017.8296389