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Abstract: Osteoarthritis (OA) is a widespread degenerative condition affecting millions of peo-
ple worldwide. Early detection and precise classification are crucial for effective disease manage-
ment. This study investigated the use of deep learning techniques to classify the severity of knee
OA from X-ray images, specifically targeting three categories: Normal (KL Grade 0), Moderate
(KL Grade 3), and Severe (KL Grade 4). We utilized a dataset from the Osteoarthritis Initia-
tive (OAI), containing 3,221 X-ray images of the knee, and fine-tuned eight pretrained CNNs
(DenseNet201, EfficientNetB7, InceptionV3, InceptionResNetV2, ResNet50V2, ResNet152V2,
Vision Transformer B32, and Xception). A custom CNN and ensemble deep learning models
(hard and weighted voting) were also proposed with a total of 11 models. The models were
assessed using a dataset split of 70% for training, 15% for validation, and 15% for testing, ensur-
ing comprehensive evaluation across all development stages. DenseNet201 achieved the highest
classification accuracy of 97.11% among the individual models, while Vision Transformer B32
showed the lowest accuracy of 59.38%. Ensemble methods using hard and weighted voting,
incorporating the top five models, achieved a consistent accuracy of 97.11%. These results
demonstrate the potential of deep learning, particularly ensemble strategies, in accurately clas-
sifying knee OA severity. This method can help build smarter tools that assist doctors in making
better decisions, aiding in the early detection and management of OA, offering a robust tool for
improving patient outcomes.
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1. Introduction

Osteoarthritis (OA) (Keith Sinusas, 2012) is the most prevalent form of arthritis, affecting
millions of people worldwide and placing a growing strain on healthcare systems, especially
as the number of aging populations and obesity rates rise (Xie et al., 2025; Fajarani et al.,
2024). Osteoarthritis is a progressive joint disorder characterized by cartilage breakdown, joint
inflammation, and structural deterioration. These pathological changes result in chronic pain,
impaired mobility, and significantly reduced quality of life. Although the Kellgren–Lawrence
(KL) grading scale is the most commonly employed radiographic tool for assessing OA severity
(Kondal et al., 2022), it remains subjective and is prone to inconsistencies between different
observers, undermining its diagnostic reliability, particularly in early stages (Zhao et al., 2025).
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Recent advances in artificial intelligence (AI)—particularly in deep learning (DL) and con-
volutional neural networks (CNNs), offer significant promise for the objective and automated
analysis of OA from medical images. Unlike traditional methods, these techniques can learn
relevant features from raw radiographs autonomously, thereby reducing the need for manual in-
terpretation and improving consistency (Foti and Longo, 2024). However, existing AI methods
face challenges in ensuring generalizability across different imaging settings and in dealing with
model interpretability, especially for early-stage OA diagnosis (Ou et al., 2025; Xin Teoh et al.,
2024).

To address these challenges, this study presents approaches that fine-tunes eleven state-of-
the-art DL models, including CNNs, ensemble hard and weighted voting models, and a vision
transformer, on a carefully partitioned dataset of knee X-ray images. A unique aspect of this
work is the introduction of ensemble strategies, including hard and weighted voting, to im-
prove robustness and combine the strengths of individual models. Our results demonstrate
that by combining multiple high-performing models, these ensemble strategies significantly en-
hance diagnostic consistency without sacrificing accuracy, a crucial advantage over single-model
approaches.

The proposed method outperforms previous studies, achieving exceptional accuracy and
robustness, thus offering a reliable tool for automated OA classification in clinical decision-
support systems. The main contributions of this work include the application of cutting-edge
ensemble techniques, robust fine-tuning of multiple model architectures, and demonstration of
their potential for OA classification in clinical settings. Despite significant advances in deep
learning for medical image analysis, current approaches to knee osteoarthritis (KOA) classifi-
cation suffer from limited generalizability, inconsistent performance across severity levels, and
reliance on single-model architectures that struggle to balance accuracy and robustness. This
study addresses these limitations by developing and evaluating fine-tuned convolutional and
transformer-based models, enhanced through ensemble strategies, to achieve reliable and objec-
tive multi-class KOA classification using the OAI dataset.

The novelty of this study lies in the integration of ensemble learning with fine-tuned convo-
lutional and transformer-based architectures to achieve robust, multi-class KOA classification.
Unlike previous studies that relied on single-model or binary setups, this study introduces a
comprehensive comparison of eleven state-of-the-art models, including both CNNs and Vision
Transformers—and proposes optimized ensemble strategies (hard and weighted voting) to en-
hance generalization and diagnostic reliability. The study also establishes a new benchmark on
the OAI dataset, demonstrating superior accuracy and balanced performance across all evalu-
ation metrics, thereby contributing to the development of a clinically relevant and technically
innovative framework for automated OA diagnosis. The primary research question guiding
this study is: Can fine-tuned CNNs and vision transformers, when combined through ensemble
learning, improve the accuracy and robustness of multi-class KOA classification compared to
individual models?

Osteoarthritis (OA) is a widespread health issue that strains healthcare systems globally,
with traditional diagnostic methods, such as the Kellgren–Lawrence (KL) grading scale, suffer-
ing from subjectivity and inter-observer variability (Wing et al., 2021). Despite advancements
in deep learning (DL) for OA diagnosis, the literature has primarily focused on single-model
approaches, with limited attention given to the potential benefits of combining multiple mod-
els using ensemble strategies. This gap is significant because ensemble methods, such as hard
and weighted voting, have shown promise in improving the robustness and accuracy of ma-
chine learning models by leveraging the strengths of various algorithms. This study proposes an
ensemble-based approach for OA classification, combining multiple state-of-the-art DL models
to enhance classification accuracy and provide a more reliable tool for clinical decision-support
systems. Early detection of OA plays a crucial role in improving patient outcomes by enabling
timely intervention, which can slow disease progression and reduce the need for more invasive
treatments, such as joint replacement surgery. Identifying OA in its early stages allows for better
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management through nonsurgical methods such as physical therapy, medication, and lifestyle
changes, which can significantly enhance a patient’s quality of life and reduce healthcare costs.
Multiple studies have explored the application of DL techniques for the automated classifica-
tion and grading of knee OA using radiographic images, primarily employing the Kellgren and
Lawrence (KL) grading system as a reference standard. One such effort is MedKnee (Touahema
et al., 2024), which utilizes the pre-trained Xception model within a graphical user interface
(GUI) to assist physicians in diagnosing KOA. MedKnee trained on 5000 X-ray images from
the Osteoarthritis Initiative dataset achieved accuracies of 95.36% and 94.94% on two external
validation datasets, indicating robust performance in automated KOA prediction. Although
MedKnee demonstrated robust performance with high accuracy, it relies on a single pretrained
model (Xception), which could benefit from exploring a broader range of models and advanced
TL techniques for more generalizable results across diverse datasets. A 12-layer CNN was de-
veloped specifically for binary classification and severity grading of knee osteoarthritis (KOA)
(Rani et al., 2024). Leveraging the OAI dataset, the proposed model achieved an accuracy of
92.3% for binary classification and 78.4% for multi-class severity classification, outperforming
prior methods.

The 12-layer CNN model showed promising results for binary classification but had lower
accuracy for multi-class classification. A deeper exploration of multi-class classification models or
ensemble techniques could help improve the robustness of the model for varying KOA severity
levels. (Zhang et al., 2024) introduced a Dense Multi-Scale (DMS) CNN module, improving
feature recognition through dense connections across varying convolutional layers. Their model
demonstrated superior performance compared to a DenseNet baseline, with 73.00% accuracy
and 92.73% area under the curve (AUC), reinforcing the benefit of multi-scale feature learning.
While the DMS CNN module improved feature recognition, its performance on larger datasets
with more complex images (e.g., diverse real-world data) could be further investigated to validate
its generalizability across various clinical settings. (Kaur et al., 2024) explored ConvNeXt, an
advanced architecture based on ResNet and Transformer models.

Their methodology emphasized the pre-processing and augmentation of KL-graded X-ray
images from the OAI dataset. The results indicated that ConvNeXt outperformed conventional
models and vision transformers, which was statistically verified through robust evaluation met-
rics. The study highlighted ConvNeXt’s superior performance, but the integration of clinical
metadata and longitudinal patient data alongside the image data could further enhance model
interpretability and generalizability. Yong et al., 2022 validated an ORM combined with multi-
ple state-of-the-art architectures such as DenseNet, ResNet, and MobileNet v2. Among these,
DenseNet-161 exhibited the best results, achieving a mean absolute error of 0.330, an ACC-
Macro of 88.09%, and a quadratic weighted kappa (QWK) of 0.8609. The Ordinal Regression
Module (ORM) achieved good results with DenseNet-161, but further research could focus on
improving model accuracy for early KOA detection and investigating its effectiveness in de-
tecting subtler forms of the disease across different age groups and demographics. Ahmed and
Imran, 2024 investigated the application of fine-tuned CNN models, including VGG, ResNet, and
EfficientNetb7, for both multiclass and binary classification tasks. Although EfficientNetb7 con-
sistently performed best, their GradCAM analysis revealed limitations in distinguishing certain
KL grades, highlighting the complexity of expert diagnosis replicating. While EfficientNetb7
showed high accuracy, their study’s GradCAM analysis revealed challenges in distinguishing
specific KL grades. Addressing these challenges with advanced feature extraction techniques or
incorporating additional contextual information could improve model performance. (Yoon et al.,
2023) developed MediAI OA, a comprehensive artificial intelligence (AI) model incorporating
joint space narrowing (JSN) quantification, osteophyte detection, and KL grading. Trained on
44,193 OAI radiographs, the model achieved substantial consistency with clinical ground truth,
as reflected by a kappa coefficient of 0.768 and an accuracy of 92% in OA diagnosis.

MediAI OA achieved good consistency with clinical ground truth, but its practical appli-
cation could be further strengthened by integrating more diverse datasets with real-world data
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variability (e.g., different imaging conditions). (Sarvamangala and Kulkarni, 2021) presented
the MCBCNN, which integrates pretrained CNNs such as MobileNet2, ResNet50, and Incep-
tionNetV3 with MCFs. The MCBCNN based on ResNet50 reported the highest performance,
with over 95% average accuracy and nearly 0.9 AUC. MCBCNN achieved high accuracy, but
the performance could be further improved by incorporating dynamic learning strategies, real-
time updates from clinical data, or integration with other diagnostic modalities like MRI or
CT scans. Ganesh Kumar and Das Goswami (Ganesh Kumar and Goswami, 2023) emphasized
the importance of pre-processing, particularly image sharpening, to enhance the clarity of knee
X-rays. Their enhanced CNN-based approach achieved a significant improvement, reporting a
mean accuracy of 91.03%, up from 72% using unprocessed images. The enhancement achieved
through image sharpening is notable, but a more comprehensive approach using additional pre-
processing techniques (e.g., contrast adjustment or edge detection) combined with DL could
further boost accuracy and robustness. (Olsson et al., 2021) addressed the challenge of clas-
sifying KOA severity in unfiltered datasets that consider prevalent visual anomalies, including
implants and casts.

Using ResNet trained on 6103 exams, the authors reported an AUC of 0.92 for KL grades,
demonstrating robust performance even with real-world data variability. Although their model
performed well even with real-world data containing disturbances, incorporating techniques that
automatically filter out noisy or irrelevant images could improve the challenges posed by mixed-
quality data. (Tariq et al., 2025) proposed a fine-tuned DenseNet169 model evaluated against
several DL algorithms. They achieved 95.93% and 93.78% accuracy in multi-class and binary
classification, respectively, using the OAI dataset, demonstrating the effectiveness of advanced
model architectures in KOA severity assessment. Finally, Alshamrani introduced Osteo-NeT,
leveraging transfer learning with VGG-16 and ResNet-50. Their method focused on early detec-
tion, with VGG-16 achieving 99% training accuracy and 92% testing accuracy, indicating strong
predictive capabilities suitable for clinical applications. Osteo-NeT showed strong performance
in early detection, but further improvements could be made by leveraging more advanced TL
models or integrating multi-modal data, such as clinical reports, to enhance diagnostic capabil-
ities. Together, these studies underscore the growing reliance on public datasets like OAI (Yong
et al., 2022) for model development and evaluation. They also highlight key methodological
advances that contribute to improved KOA classification accuracy, such as dense multi-scale
convolution (Zhang et al., 2024), ConvNeXt integration (Kaur et al., 2024), and image pre-
processing (Ganesh Kumar and Goswami, 2023).

The accurate and early classification of KOA severity is crucial, and deep learning, par-
ticularly with CNNs, has become the primary method for automating this diagnosis based on
the Kellgren-Lawrence (KL) grading system. Recent research has leveraged extensive image
datasets, such as the OAI, to drive methodological improvements. The following section re-
views key advancements, highlighting the effective use of sophisticated architectures, multiscale
feature learning, ordinal regression modules, and enhanced image preprocessing to improve the
accuracy and generalizability of KOA severity assessment models.

Osteoarthritis (OA) is a widespread health issue that strains healthcare systems globally,
with traditional diagnostic methods, such as the Kellgren–Lawrence (KL) grading scale, suffering
from subjectivity and inter-observer variability (Wing et al., 2021). This study aims to overcome
these challenges by using deep learning (DL) models, including convolutional neural networks
(CNNs) and vision transformers, to automate and improve OA classification using knee X-ray
images. The use of ensemble strategies—hard and weighted voting—to combine multiple models,
improving robustness and accuracy over single-model approaches, is a key innovation. By fine-
tuning 11 state-of-the-art DL models, this study not only enhances classification performance
but also offers a more reliable tool for clinical decision-support systems. The main objectives of
this study are to fine-tune and evaluate multiple DL models, explore ensemble techniques, and
provide a robust and, accurate framework for OA classification, ultimately bridging the gaps in
early OA diagnosis and management.
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2. Methods

Figure 1 presents an OA classification framework leveraging DL models. The process in-
cludes several steps, including data pre-processing, model training, evaluation, and comparison.
The overall framework of this study follows a structured sequence to ensure methodological
coherence and reproducibility. The process begins with dataset acquisition and preprocessing
of knee X-ray images from the OAI database to enhance image quality and standardize inputs.
Next, multiple DL architectures comprising fine-tuned CNNs, a vision transformer, and ensemble
models—are developed and trained for multi-class KOA classification. The model performance
is then evaluated using comprehensive metrics, followed by statistical analysis and compari-
son with existing studies to validate the proposed approach’s robustness and clinical relevance.
This framework ensures a systematic link between data preparation, model optimization, and
diagnostic application.

Figure 1 Methodological block diagram

2.1 Description of the Dataset

In this study, we utilized a knee X-ray dataset specifically curated for knee joint detection
and Kellgren–Lawrence (KL) grading (Chen, 2018). The dataset is organized and made publicly
available through Mendeley Data, sourced from the OAI database. The Osteoarthritis Initia-
tive (OAI) is a crucial, publicly available database generated from a multicenter, prospective,
longitudinal observational cohort study. Recruitment for the study began in February 2004 and
ended in May 2006, enrolling 4,796 men and women aged 45–79 years. The primary aim of this
study is to establish a resource—including clinical imaging (X-ray) and biospecimen data—to
accelerate the identification of biomarkers for the incidence and progression of knee OA. A con-
sistent schedule of in-clinic and phone follow-up visits defines the data series, originally planned
for 8- years and later extended. The original OAI dataset includes various knee X-ray images
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annotated with KL grades ranging from 0 (normal) to 4 (severe OA).
To our OA classification task using deep learning, we selected three specific KL grades:

Normal (KL Grade 0), Moderate (KL Grade 3), and Severe (KL Grade 4). These classes
were selected because they represent the most clinically relevant stages for treatment decisions.
Intermediate grades (1 and 2) were excluded due to high inter-observer variability and label
ambiguity, which could reduce the reliability of the model. Focusing on these distinct categories
improves robustness and ensures practical clinical applicability. A total of 3,221 knee X-ray
images were used in this study, which were distributed across the three classes as shown below:

Table 1 Description of the dataset
Class KL grade Number of images Description

Normal 0 1,640 No signs of OA
Moderate 3 1,286 Moderate osteoarthritis

Severe 4 295 Severe osteoarthritis
Total 3,221

These images undergo preprocessing steps such as augmentation, histogram equalization,
edge enhancement, resizing, and normalization before being fed into deep learning models for
classification.

2.2 Data Preprocessing

The effective preprocessing of medical imaging data plays a crucial role in improving the
performance and generalization of deep learning models. In this study, the knee X-ray images
from the selected dataset were subjected to a series of pre-processing steps designed to en-
hance image quality, normalize input, and augment the training data. Table 2 summarizes the
preprocessing steps used in the proposed work.

Table 2 Preprocessing steps
Step No. Process Description

1 Grayscale conversion Converts RGB images to single-channel grayscale to
simplify feature extraction.

2 Histogram
equalization

Improves contrast using Contrast Limited Adaptive
Histogram Equalization (CLAHE).

3 Edge enhancement Enhances edges using the Laplacian operator to high-
light joint structures.

4 Resizing Standardizes the image dimensions to 224 × 224 × 3
pixels.

5 Normalization Scales the pixel values to the range [0, 1].
6 Channel expansion Expands the grayscale image back to the RGB format

for compatibility with pre-trained networks.
7 Data splitting The dataset was split into three portions: 70% for

training, 15% for validation, and 15% for testing.
8 Data augmentation Applies random transformations to increase the diver-

sity of the training set.

The preprocessing steps are implemented in Python using the OpenCV library. The function
preprocess image ensures that each image is prepared uniformly before being fed into the deep
learning model.

• CLAHE enhances the local contrast using Eq. (1).
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T (I) = (I − Imin) × (L − 1)
Imax − Imin

(1)

(Sharma and Kamra, 2023)
T (I) : transformed pixel intensity
I : original pixel intensity
Imin, Imax : minimum and maximum pixel values in the local region
L : number of gray levels (commonly 256)

• Edge enhancement using Laplacian: The Laplacian operator detects edges by applying
Eq. (2) as follows:

∇2f(x, y) = ∂2f

∂x2 + ∂2f

∂y2 (2)

(Mlsna and Rodriguez, 2009)
where f(x, y) is the intensity at the pixel (x, y).

• The normalization formula is used as in Eq. (3):

Imagenormalized =
Imageoriginal

255 (3)

(Patro and Sahu, 2015)
The normalization formula in Eq. (3) uses the value of 255 because the input image pixel

values are in the range of 0 to 255, which is the standard for images with 8-bit depth per
channel. By dividing by 255, we scale the pixel values to a range of [0, 1], which is commonly
done to normalize the data and improve the model’s stability and performance during training.
As shown in Table 3, the dataset was split into 70% training, 15% validation, and 15% testing
sets, a commonly adopted strategy in medical imaging. This split ensures sufficient data for
learning while reserving adequate samples for (HT) and unbiased evaluation.

Table 3 Information on data splitting
Subset Number of images Percentage (%) Description

Training 2,254 70% Model learning
Validation 482 15% Hyperparameter tuning

Testing 485 15% Final evaluation
Total 3,221 100%

Table 3 presents the data splitting information for the training, validation, and testing
subsets. The dataset is divided into 70% for training, 15% for validation, and 15% for testing,
totaling 3,221 images. This balanced partitioning ensures that each subset is large enough to
represent the full diversity of the dataset, which helps optimize model performance, reduces
the risk of overfitting, and provides a fair evaluation of the model’s generalization capabilities.
In addition, balanced data splitting helps prevent the model from being biased toward any
particular subset, ensuring that all classes are adequately represented in both the training and
evaluation stages. Figure 2 shows a sample image before and after applying the pre-processing
steps, highlighting the contrast enhancement and edge clarity, which further aids the model in
making accurate predictions.
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Figure 2 Comparison between the original and pre-processed knee X-ray images

In this study, augmentation techniques are applied to enhance the variety and strength
of the training dataset, thereby reducing overfitting and improving model generalization. The
augmentation process includes random rotation within a range of ±10 degrees, width and height
shifts up to 10% of the image size, zoom variations of up to 10%, and horizontal flipping to
account for variations in knee orientation. Additionally, the fill mode is set to “nearest” to handle
pixel values introduced by these transformations. These augmentations are applied dynamically
during training using TensorFlow’s ImageDataGenerator, ensuring that the model encounters
a varied set of image conditions while maintaining the anatomical structure relevant for OA
classification. To extract rich and discriminative feature representations from input data, we used
five advanced CNN (Chauhan et al., 2018) architectures as embedding models: EfficientNetB7
(Tan and Le, 2019), DenseNet201 (Zhu and Newsam, 2018), ResNet152V2 (Duklan et al., 2024),
InceptionV3, and InceptionResNetV2 (Borawar and Kaur, 2023). These architectures were
selected based on their high performance on large-scale image classification benchmarks and
architectural diversity, which enhances the effectiveness of ensemble learning.

2.3 Deep Learning Models

EfficientNetB7 (Tan and Le, 2019), part of the EfficientNet family, uses a compound scal-
ing strategy that evenly adjusts the depth, width, and resolution of the model. It delivers
top-tier accuracy while using fewer parameters and less computation, making it ideal for TTL.
DenseNet201 (Densenets features dense connections, where each layer is connected to all previ-
ous layers) (DenseNets et al., 2021). This setup improves the flow of gradients, promotes the
reuse of features, and reduces parameter count—making it well-suited for datasets with lim-
ited training examples. ResNet152V2 (Koonce, 2021) is a deep residual model that solves the
vanishing gradient issue by using identity shortcut connections, helping the network train more
effectively. The V2 variant enhances training stability by using pre-activation residual units,
allowing the model to learn more complex patterns. InceptionV3 is known for its efficient use of
parameters and computational resources, achieved through factorized convolutions and aggres-
sive regularization techniques. It has demonstrated strong performance across various vision
tasks. InceptionResNetV2 (Demir and Yilmaz, 2020) combines the strengths of the Inception
architecture with residual connections to produce a hybrid model that balances depth and ef-
ficiency, making it highly effective for deep feature extraction. Figure 3 shows the finetuning
process for the pre-trained models.

Figure 3 illustrates a deep learning model architecture for image classification using a pre-
trained base model. It starts with an input image, which is passed through the pre-trained base
model for feature extraction. The extracted features are then processed by a classification head,
which includes a Global Average Pooling layer followed by a SoftMax (Belagatti, 2024) layer
with three neurons, corresponding to the output classes: Normal, Moderate, and Severe. This
model uses TL, leveraging pretrained weights for efficient feature extraction and classification.

We also finetuned a ViT B32 model for osteoarthritis. The ViT model is a vision trans-
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former (Han et al., 2023) with a ‘vit b32‘ architecture (Ranftl et al., 2021). It is designed to
classify images into 3 categories. It uses SoftMax activation for multi-class classification and is
pre-trained for better performance. The model includes additional layers, such as batch normal-
ization, 11 dense layers with GELU activation, and a SoftMax output layer for classification.
Figure 4 shows the finetuning process for using the ViT model.

Figure 3 Fine-tuning of the transfer learning models

Figure 4 Finetuning of the ViT-B32 model

As illustrated in Figure 4, the ViT architecture divides the input knee X-ray image into a
sequence of non-overlapping patches. Each patch is linearly projected into an embedding vector,
and the spatial relationships between the patches are preserved by adding positional encodings.
These embeddings, along with a learnable [class] token, are then passed into a stack of (TEBs)
transfer encoder blocks. Each encoder consists of multi-head self-attention and feed-forward
multilayer perceptron layers, enabling the model to capture both local texture features and
long-range contextual dependencies across the image.
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Normalization layers are integrated within each encoder block to stabilize training and
enhance convergence. The final encoded representation corresponding to the [class] token is fed
into the MLP classification head, which includes batch normalization (BN), GELU activation,
and a SoftMax output layer that predicts the three severity classes — Normal, Moderate, and
Severe). This hierarchical processing allows ViT to analyze global structural variations in knee
joints while maintaining fine-grained feature sensitivity, making it suitable for medical image
classification tasks where spatial relationships are crucial. The ViT model splits an image into
patches, which are embedded with positional information and processed using a transformer
encoder with multi-head attention and MLP layers (Ranftl et al., 2021). The features are then
passed through an MLP head with batch normalization and GELU activation, followed by a final
dense layer with SoftMax activation to classify the image into Normal, Moderate, or Severe. This
approach uses transformers to efficiently capture the image context for classification.

We implemented two ensemble strategies to further enhance the robustness and general-
ization of the embedding process (Ganaie et al., 2022). Theoretically, ensemble learning is
grounded in the principle that combining predictions from multiple diverse models can reduce
both variance and bias, resulting in improved generalization and stability. In deep learning
applications, individual models may capture different aspects of data distribution; therefore,
aggregating their outputs through hard or weighted voting mitigates overfitting and leverages
complementary strengths. This approach is particularly beneficial in medical image analysis,
where variability in imaging conditions and subtle pathological features can cause underperfor-
mance of single models. The ensemble method enhances diagnostic reliability and minimizes the
impact of individual model errors by integrating several high-performing CNNs. The first is a
hard voting ensemble, where the majority vote among the five models determines the final pre-
diction. This approach leverages the diversity of the models to reduce variance and improve the
stability of prediction. The second strategy is a weighted voting ensemble, where each model’s
prediction is assigned a weight based on its individual performance. The weights used were
0.88, 0.90, 0.90, 0.85 for EfficientNetB7, DenseNet201, ResNet152V2, InceptionV3, and 0.89
for InceptionResNetV2. This method allows more accurate models to have a greater influence
on the final decision, thereby improving the overall ensemble performance. The weights were
assigned based on each model’s performance on a validation dataset, specifically reflecting the
models’ individual accuracy in predicting the severity of OA. We conducted a cross-validation
process where each model was evaluated on a separate validation set, and the accuracy of each
model was used to determine the weight of each model relative to the other models. The pro-
posed CNN model is a custom-built deep learning architecture designed using TensorFlow and
Keras for multi-class classification of knee osteoarthritis severity. It accepts input images of size
224×224×3 and outputs predictions across three classes using a SoftMax activation function.
The architecture consists of four convolutional blocks, each comprising two Conv2D layers with
ReLU activation, followed by batch normalization and max-pooling to extract and reduce spatial
features. The filter count progressively increases from 32 to 256, enabling the model to learn
more complex patterns. After flattening the output, two dense layers with 512 and 256 units are
used, each followed by dropout (0.5 and 0.3) to minimize overfitting. The model is trained using
the Adam optimizer (learning rate: 0.0005) and optimized with categorical CE loss, targeting
high accuracy. This architecture balances depth and regularization to achieve efficient feature
learning and robust generalization in medical image classification tasks.

During model training, the validation set was used to monitor the model’s performance af-
ter each epoch. An early stopping mechanism with a patience value of 60 epochs was applied to
prevent overfitting and ensure optimal generalization. The model checkpoint corresponding to
the best validation accuracy was automatically saved and later used for testing and comparative
evaluation. This procedure ensured that the final reported results reflected the model’s most
stable and generalizable performance rather than a potentially overfitted state. We used hyper-
parameters with a batch size of 16, training for 60 epochs, and input images with 3 channels
(RGB). The Adam optimizer (Kingma and Ba, 2015) was used with a learning rate of 0.001,
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beta 1 set to 0.9, and beta 2 set to 0.999. These values control the optimizer’s momentum and
variance. Dropout was included as a regularization technique (optional) to prevent overfitting,
with a typical rate of approximately 0.5. The loss function used was categorical cross-entropy,
appropriate for multi-class classification tasks, and the model’s performance was evaluated using
accuracy as the metric. This setup ensures efficient training while minimizing overfitting.

2.4 Performance Metrics

We used a comprehensive set of evaluation metrics. These include fundamental evaluation
metrics obtained from the confusion matrix, such as accuracy, precision, recall, and F1-score,
as well as diagnostic tools (ROC,AUC) (Hossin and bin Sulaiman, 2015). A confusion matrix
is a 2×2 table that summarizes a binary classifier’s prediction outcomes against the true labels.
Several metrics are computed to assess the classifier based on the four fundamental outcomes.
The percentage of all forecasts that the model correctly predicted is known as accuracy. It is a
global indicator of the accuracy of the classifier across both classes. In this section, the terms
TP, FP, FN, and TN have been clearly defined in the context of the three-class classification
task. Specifically, TP refers to instances that are correctly classified as belonging to a particular
class, whereas FP indicates instances that are incorrectly classified as belonging to that class.
FN represents instances that belong to the class but are incorrectly classified as not belonging
to it, and TN refers to instances that are correctly classified as not belonging to the given
class. These definitions are now explicitly included to ensure clarity in evaluating the model’s
performance across all three classes. The accuracy in mathematics is defined in Eq. (4).

Accuracy is defined as the ratio of correctly classified instances to the total number of
instances and is given in Eq. (4).

Accuracy = TP + TN

TP + TN + FP + FN
(4)

Precision quantifies how accurate positive predictions are; that is, how frequently the model
correctly identifies an image as osteoporotic. It is described as in Eq. (5).

Precision = TP

TP + FP
(5)

Recall, also known as sensitivity, quantifies how well the model detects all positive cases,
i.e., how many cases of osteoporotic behavior the model detected. The definition of recall is
given in Eq. (6).

Recall = TP

TP + FN
(6)

The F1-score represents the harmonic mean of precision and recall. This single metric
balances false positives and false negatives. The F1-score is expressed in Eq. (7).

F1-score = 2TP

2TP + FP + FN
(7)

Furthermore, the Jaccard Index (IoU) in Eq. (8) (Vorontsov et al., 2013) evaluates alignment
in tasks such as object detection and image segmentation by measuring the overlap between
anticipated and real regions.

IoU = TP

TP + FP + FN
(8)

Additionally, we evaluated the ROC curve and AUC. The ROC curve illustrates the trade-
off between true positive rate (TPR), also known as recall, and false positive rate (FPR) across
different classification thresholds, with a better classifier pushing the curve toward the upper-left
corner (Bhandari, 2020).
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2.5 Results and Discussion

This section briefly presents the experimental outcomes, interprets the findings, and high-
lights the main conclusions drawn from the results. Table 4 presents the results of the proposed
models regarding accuracy, precision, and recall. In the realm of deep learning, selecting an op-
timal model for image classification tasks is critical for achieving high diagnostic accuracy and
clinical reliability, particularly in sensitive medical imaging applications. This study evaluates
the performance of several state-of-the-art CNNs and transformer-based architectures using key
evaluation metrics such as accuracy, precision, recall, F1-score, specificity, Jaccard index, and
area under the curve (AUC). The models included DenseNet201, EfficientNetB7, InceptionV3,
InceptionResNetV2, ResNet50V2, ResNet152V2, ViT B32 (Vision Transformer), and Xception.
Additionally, two ensemble techniques, hard voting and weighted voting, are employed to explore
the benefits of model aggregation. The comparative analysis aims to identify the most robust
architecture for reliable performance across multiple metrics. In this study, we did not retrain
the ensemble models; instead, we used pretrained models and combined their predictions us-
ing hard and weighted voting techniques. Despite DenseNet201’s comparable performance, the
inclusion of ensemble methods was to investigate any potential improvements in robustness or
accuracy without significantly increasing computational costs, as the models were not retrained.

The comparative analysis reveals that DenseNet201 and both ensemble methods (hard and
weighted voting) achieved the highest overall performance across most metrics, each recording
an accuracy, precision, recall, and F1-score of 97.11%, and specificity of 98.32%, with a Jaccard
index of 94.39% (Table 4). This consistency underscores the robustness of DenseNet201 and
the effectiveness of ensemble strategies in capturing the strengths of individual models while
minimizing their weaknesses.

Table 4 Proposed model results
Model Accuracy Precision Recall F1-

score
Specificity Jaccard

index
AUC

CNN 81.44 73.70 81.44 77.30 88.54 68.70 0.936
DenseNet201 97.11 97.10 97.11 97.10 98.32 94.39 0.992

EfficientNet-B7 95.46 95.45 95.46 95.45 97.47 91.32 0.986
InceptionV3 94.02 93.97 90.02 93.96 96.51 88.72 0.9917

InceptionResNetV2 95.67 95.93 95.67 95.72 97.86 91.70 0.9914
ResNet50 91.96 92.35 91.96 91.99 95.72 85.11 0.986

ResNet152V2 94.23 94.30 94.23 94.25 96.92 89.08 0.9887
ViT-B32 59.38 61.23 59.38 60.05 77.79 42.23 0.7369
Xception 95.88 95.89 95.88 95.87 97.66 92.08 0.9922

Ensemble hard
voting

97.11 97.10 97.11 97.10 98.32 94.39 0.9928

Ensemble
weighted voting

97.11 97.10 97.11 97.10 98.32 94.39 0.9928

Among the individual models, Xception and InceptionResNetV2 also demonstrated strong
performance, with Xception slightly outperforming in terms of Jaccard index (92.08%) and
precision (95.89%), while InceptionResNetV2 had the highest specificity (97.86%) among all
the standalone models. EfficientNetB7 followed closely, with a performance F1-score of 95.45%.
On the lower end of the spectrum, ViT B32 significantly underperformed in all metrics, with
the lowest accuracy (59.38%) and Jaccard index (42.23%), suggesting that the VTA in this
configuration may not be well-suited for the dataset or task at hand, especially when compared
to CNN-based counterparts. In addition, the proposed CNN model achieves 81.44 accuracy,
which also represents the second lowest accuracy among the proposed models. The AUC in



International Journal of Technology 17(1) 301-321 (2026) 313

Table 4 reflects each model’s performance in terms of their ability to discriminate between
classes. The AUC score ranges from 0 to 1, where a score closer to 1 indicates better model
performance. In our results, the DenseNet201 model achieved the highest AUC of 0.992, followed
closely by Xception and the two ensemble models (hard and weighted voting), both of which
obtained AUC scores of 0.9928. These models show excellent classification capability, with AUC
values indicating strong discriminatory power. The lower AUC score of 0.7369 for ViT B32
indicates that it performs less effectively in distinguishing between the classes compared to the
other models. Table 5 presents the statistical significance (p-values) between the proposed deep
learning models based on their overall performance metrics.

Table 5 P-values of the proposed models
Comparison between Model A and Model B p-value Significance
CNN vs. DenseNet201 < 0.001 Significant
CNN vs. EfficientNetB7 < 0.001 Significant
CNN vs. InceptionV3 < 0.001 Significant
ViT B32 vs. any other model < 0.001 Significant
DenseNet201 vs. InceptionResNetV2 0.24 Not significant
DenseNet201 vs. Xception 0.88 Not significant
EfficientNetB7 vs. ResNet152V2 0.12 Not significant
ResNet50V2 vs. ResNet152V2 0.34 Not significant
InceptionResNetV2 vs. Ensemble (hard vot-
ing)

0.76 Not significant

Xception vs. Ensemble (weighted voting) 0.91 Not significant

As shown in Table 5, CNN showed a statistically significant difference (p < 0.001) when
compared to the advanced architectures such as DenseNet201, EfficientNetB7, and InceptionV3,
indicating that its performance was considerably lower across all evaluated metrics. Conversely,
comparisons among high-performing models, including DenseNet201, InceptionResNetV2, Xcep-
tion, and the Ensemble configurations—showed no statistically significant differences (p > 0.05).
This indicates that these models achieved comparable performance levels in terms of accuracy,
precision, recall, F1-score, and AUC.

Furthermore, the Vit B32 model demonstrated a statistically significant difference (p <
0.001) when compared to all other models, confirming that it underperformed the remaining ar-
chitectures. Overall, while traditional CNN architectures lag behind, modern hybrid models and
ensemble approaches provide stable and statistically similar results, reinforcing their robustness
and generalization capabilities.

The traditional ResNet variants ResNet50V2 and ResNet152V2 showed moderate perfor-
mance with accuracies of 91.96% and 94.23%, respectively, but were outshined by deeper or more
specialized architectures such as DenseNet and Xception. Figure 5 shows the training /valida-
tion accuracy and loss curves for the best-performing models, DenseNet201, and the ensemble
methods (hard and weighted voting) over 50 epochs.

As shown in Figure 5, the accuracy graph shows a rapid increase in both training and vali-
dation accuracies, with training accuracies reaching 100% and validation accuracies above 95%,
despite minor fluctuations. The loss graph indicates a sharp decline in both training and valida-
tion loss during the initial epochs, followed by consistently low loss values throughout training.
These trends demonstrate that the models learned effectively, and the ensemble methods pro-
vided more stable validation performance, indicating improved generalization and robustness.
Figure 6 presents the confusion matrix for the best-performing models.
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Figure 5 Accuracy curve (A) and loss curve (B) for the best-performing models: DenseNet201
and the ensemble models

Figure 6 shows the classification performance of DenseNet201 and ensemble methods across
the three categories. The models accurately classified 244 Normal, 186 Moderate, and 41 Severe
cases, with minimal misclassifications. Only a few moderate cases were misclassified as normal
(6) or moderate (2), and (4) severe cases were predicted as moderate. The high diagonal values
and low off-diagonal errors reflect strong predictive accuracy and balanced performance across
all classes, highlighting the effectiveness of the models in distinguishing between varying levels
of joint disease severity. Figure 7 shows the multiclass ROC curves for the best models.

Figure 6 Confusion matrix for the best DenseNet201 and Ensemble models

As shown in Figure 7, DenseNet201 and ensemble methods—demonstrating their classi-
fication performance across three classes. The curves for all classes are clustered near the
top-left corner, indicating excellent discrimination ability. The AUC values are exceptionally
high (0.9947 for class 0 (normal), 0.9874 for class 1 (moderate), and 0.9946 for class 2 (severe),
highlighting the strong capability of the models to distinguish between different joint disease
categories with high sensitivity and specificity.

The high diagnostic accuracy and stability achieved by DenseNet201 and the ensemble
models are clinically significant. In practical hospital workflows, such performance can translate
into faster and more reliable preliminary screening, assisting radiologists in early detection and
reducing diagnostic errors. These models can optimize clinical workload, support decision-
making in resource-limited settings, and enhance overall diagnostic efficiency without replacing
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the clinician’s judgment by automating initial image interpretation. Their robustness across
multiple evaluation metrics also indicates the potential for consistent real-world deployment in
clinical settings. Overall, the results highlight the superiority of DenseNet201 and the advantage
of ensemble methods in enhancing classification robustness and reliability. The findings show
that combining predictions from multiple high-performing models leads to performance metrics
that are competitive with or exceed those of the best single model.

Figure 7 The receiver operating characteristic curve for the best models (DenseNet201 and
Ensemble models)

3. Comparison

Table 6 presents a comparative overview of recent studies that used deep learning (DL)
models for KOA classification using the Osteoarthritis Initiative (OAI) dataset (National Insti-
tutes of Health, 2012). The reviewed works vary in model architecture, dataset utilization, and
classification setup (binary vs. multi-class), along with performance measures such as accuracy,
area under the curve (AUC), and F1-score.

Compared to previous methods in Table 6, the proposed DenseNet201- based model out-
performs all reviewed approaches, achieving 97.11% accuracy in a 3-class classification setting
using the OAI dataset. This exceeds the best previously reported multi-class performance, such
as 95.93% by Olsson et al., 2021 and approximately 95% by Sarvamangala and Kulkarni, 2021,
both of which were also conducted on the OAI dataset.

Earlier studies such as Rani et al., 2024 and Zhang et al., 2024, despite using the same
dataset, demonstrated reduced performance in multi-class configurations compared to binary
setups. Even ensemble-based or customized CNN architectures in prior works did not reach the
generalization capability achieved by our model.

The superior results highlight the impact of DenseNet201’s dense connectivity and feature
reuse, which enable more effective gradient flow and capture of subtle radiographic variations
in KOA severity. Furthermore, incorporating ensemble strategies (hard and weighted voting)
maintained the top accuracy level, confirming the proposed approach’s robustness across the
OAI dataset.

Notably, transformer-based architectures, such as ViT B32 and conventional CNN baselines,
underperformed, reinforcing that convolutional architectures remain more suitable for KOA
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classification on this dataset, particularly given its spatial locality and limited sample size. In
conclusion, the proposed DenseNet201 model establishes a new benchmark on the OAI dataset,
demonstrating superior diagnostic performance and generalization in multi-class medical image
classification tasks when combined with deeper, densely connected CNNs and ensemble methods.

Table 6 Comparison with other related works
Authors Algorithm/Model Classes Accuracy/Results

(Rani et al., 2024) 12-layer CNN 2, 5 92.3% (binary), 78.4% (multi-class)
(Zhang et al., 2024) Dense Multi-Scale (DMS)

CNN
5 73% ACC, 92.73% AUC

(Yong et al., 2022) VGG, GoogLeNet, ResNet 5 DenseNet161: 88.09% ACC, Macro-
MAE: 0.330, and QWK: 0.8609

(Yoon et al., 2023) Medial OA (Custom AI) 4 KL grading ACC: 0.83, kappa: 0.768,
OA diag. ACC: 0.92

(Sarvamangala and
Kulkarni, 2021)

MCBCNN with MobileNetV2,
ResNet50, and InceptionV3

5 ResNet50 variant: ˜95% ACC, AUC:
0.9, F1: 0.8

(Ganesh Kumar and
Goswami, 2023)

CNN with sharpening image 5 The accuracy improved to 91.03%

(Olsson et al., 2021) DenseNet169 + 5 other DL
models

5, 2 Multi-class: 95.93% ACC, binary:
93.78% ACC

(Alshamrani et al.,
2023)

VGG-16, ResNet-50 2 VGG-16: Train 99%, Test 92%

Proposed model DenseNet201, hard and
weighted voting

3 97.11% accuracy

4. Conclusions

This study aimed to address the challenges of accurately classifying knee OA severity from
X-ray images, where subjectivity and inter-observer variability limit traditional KL grading.
By fine-tuning and evaluating 11 state-of-the-art DL architectures, including both CNNs and a
vision transformer, we demonstrated that deep, densely connected models, such as DenseNet201,
offer superior performance in multi-class OA classification. Notably, the proposed ensemble
approaches, which combine the strengths of multiple high-performing models through hard and
weighted voting, consistently achieved the highest accuracy (97.11%), precision, recall, and F1-
scores across all tested configurations.

Our approach establishes a new benchmark for three-class OA classification (Normal, Mod-
erate, Severe) compared with prior work, surpassing the performance of previous single-model
and multi-class strategies. The findings also confirm that in this domain, CNN-based architec-
tures remain more effective than vision transformers, particularly when applied to datasets of
limited size, where spatial locality and dense connectivity play a critical role in feature extrac-
tion. Furthermore, the integration of a tailored preprocessing pipeline, including CLAHE-based
contrast enhancement, Laplacian edge sharpening, and extensive data augmentation, proved
essential in improving image clarity and generalization, contributing directly to the robustness
of the results. The clinical relevance of this study stems from its potential to support decision-
making in routine radiographic analysis. The proposed models can serve as reliable tools to
assist radiologists and orthopedic specialists in early detection and severity assessment of OA,
ultimately improving patient management and treatment planning. The use of ensemble strate-
gies also enhances diagnostic confidence by minimizing the weaknesses of individual models,
which is particularly important in medical applications where consistency is paramount.

Despite these promising results, certain limitations should be acknowledged. Although
widely used, the dataset is limited in terms of class balance, with fewer severe cases than
normal or moderate grades. Additionally, the study was conducted solely on the OAI dataset,
raising questions regarding the generalizability of the study to diverse populations and imaging
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protocols. While the results highlight the superiority of DenseNet201 and ensemble methods, a
deeper theoretical exploration of why such architectures excel in this context is still needed.

Future research should explore integration with multimodal data, such as clinical records
and longitudinal patient outcomes, to improve the applicability of the model in real-world set-
tings. Expanding to larger and more heterogeneous datasets, investigating explainable AI ap-
proaches, and validating models in prospective clinical studies will be essential steps toward
translating this work into practical clinical tools. In summary, this study demonstrates that
DL, particularly DenseNet201 and ensemble-based strategies, provides a highly accurate, ro-
bust, and clinically meaningful framework for OA classification. The findings not only advance
the state of the art in medical image analysis but also underscore the transformative potential
of AI-driven diagnostic support in orthopedics.

List of abbreviations

Abbreviation Full term Abbreviation Full term
ACC Accuracy AI Artificial Intelligence
AUC Area Under the Curve CLAHE Contrast Limited Adaptive

Histogram Equalization
CNN Convolutional Neural Net-

work
DL Deep Learning

FN False Negative FP False Positive
BN Batch Normalization KL Kellgren–Lawrence (grading

scale)
KOA Knee Osteoarthritis MAE Mean Absolute Error
OAI Osteoarthritis Initiative OA Osteoarthritis

ReLU Rectified Linear Unit ROC Receiver Operating Charac-
teristic

TP True Positive TN True Negative
ViT Vision Transformer MCFFs Multiscale Convolutional Fil-

ters
TL Transfer Learning HT Hyperparameter Tuning

TEBs Transformer Encoder Blocks CE Cross Entropy
TPR True Positive Rate VTA Vision Transformer Architec-

ture
FPR False Positive Rate TTL Two-phase Transfer Learning

GELU Gaussian Error Linear Unit
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Appendix

The model was trained using a Lenovo Legion 5 laptop equipped with an NVIDIA GeForce
RTX 3060 GPU, which provides the necessary computational power for DL tasks. The system
runs on Windows 11 or Linux (preferably Ubuntu) and has at least 16 GB of RAM to efficiently
handle large datasets. Additionally, a solid-state drive (SSD) was used for faster data read/write
speeds, ensuring smooth training and handling of large models. This setup is ideal for performing
deep learning tasks that require high-performance hardware.
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