• International Journal of Technology (IJTech)
  • Vol 16, No 6 (2025)

A Greedy Adaptive and Backtracking Framework for Reducing Emission Costs in Generator Scheduling

A Greedy Adaptive and Backtracking Framework for Reducing Emission Costs in Generator Scheduling

Title:

A Greedy Adaptive and Backtracking Framework for Reducing Emission Costs in Generator Scheduling

Jangkung Raharjo, Rifki Rahman Nur Ikhsan, Lindiasari Martha Yustika

Corresponding email:


Cite this article as:
Raharjo, J., & Ikhsan, R. (2025). A greedy adaptive and backtracking framework for reducing emission costs in generator scheduling. International Journal of Technology, 16 (6), 2005– 2024.

17
Downloads
Jangkung Raharjo 1. School of Electrical Engineering, Telkom University, Bandung, Jawa Barat 40257, Indonesia 2. Center of Excellence for Sustainable Energy and Climate Change, Research Institute for Intelligent Busi
Rifki Rahman Nur Ikhsan 1.School of Electrical Engineering, Telkom University, Bandung, Jawa Barat 40257, Indonesia 2. Center of Excellence for Sustainable Energy and Climate Change, Research Institute for Intelligent Busin
Lindiasari Martha Yustika 1. School of Electrical Engineering, Telkom University, Bandung, Jawa Barat 40257, Indonesia 2. Center of Excellence for Sustainable Energy and Climate Change, Research Institute for Intelligent Busi
Email to Corresponding Author

Abstract
<p>A Greedy Adaptive and Backtracking Framework for Reducing Emission Costs in Generator Scheduling</p>

The growing demand for efficient and environmentally sustainable power generation calls for advanced optimization methods to address the economic and emission dispatch (EED) problem. This study introduces a novel hybrid optimization approach, GRASP-BLS, which integrates GRASP for global solution space exploration with BLS for accurate local refinement. The synergy between metaheuristic randomness and gradient-based precision is the main contribution of this work, enabling GRASP-BLS to outperform conventional methods in complex, constrained power dispatch scenarios. In a 4-h test case, GRASP-BLS reduced generation costs by 0.4% and emissions by 22.25% compared with SEA. Extended evaluations over a 24-hour period under two scenarios—Scenario 1 (stable loads) and Scenario 2 (dynamic loads with unit commitment)—show that GRASP-BLS consistently yields superior performance. It achieves 5.64%–9.84% cost savings and 1.72%–4.91% emission reductions, outperforming GSA, GWO, and PSO. Despite slightly higher computation time, GRASP-BLS satisfies all operational constraints, including power balance, generation limits, ramp rates, and unit commitment feasibility. These findings highlight the novelty and practicality of GRASP-BLS as a robust, scalable, and adaptive framework for real-world power system optimization, particularly in environments requiring a balance between economic efficiency and environmental responsibility.

Backtracking Line Search; Economic Emission Dispatch; GRASP; Optimization; Power System

Supplementary Material
FilenameDescription
R3-EECE-7588-20251126160501.docx ---
References

Abbass, K., Qasim, M., Song, H., Murshed, M., Mahmood, H., & Younis, I. (2022). A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environmental Science and Pollution Research, 29, 42539–42559. https://doi.org/10.1007/s11356-022-19718-6

Alhasnawi, B., Jasim, B., Bureš, V., Sedhom, B., Alhasnawi, A., Abbassi, R., Alsemawai, M., Siano, P., & Guerrero, J. (2023). A novel economic dispatch in the stand-alone system using improved butterfly optimization algorithm. Energy Strategy Reviews, 49, 101135. https://doi.org/10.1016/j.esr.2023.101135

Asl, A., & Overton, M. (2017). Analysis of the gradient method with an Armijo-Wolfe line search on a class of nonsmooth convex functions. Optimization Methods and Software, 35, 223–242. https://doi.org/10.1080/10556788.2019.1673388

Aswan, N., Abdullah, M., & Bakar, A. (2019). A review of combined economic emission dispatch for optimal power dispatch with renewable energy. Indonesian Journal of Electrical Engineering and Computer Science, 16, 33–40. https://doi.org/10.11591/ijeecs.v16.i1.pp33-40 

Bhattacharjee, K., Bhattacharya, A., & Dey, S. (2014). Chemical reaction optimization applied in economic dispatch problems. 1st International Conference on Automation, Control, Energy and Systems (ACES 2014). https://doi.org/10.1109/ACES.2014.6807995

Brata, J., & Toparakkasi, F. (2023). Public policies for climate change mitigation in Indonesia. Jurnal Aktor, 2, 103–110. https://doi.org/10.26858/aktor.v2i3.46879

Cavalcanti, J. V., Lessard, L., & Wilson, A. (2024). Adaptive backtracking for faster optimization [Manuscript in preparation]. (Accessed 2025)

Chaudhary, V., Dubey, H., Pandit, M., & Salkuti, S. (2024). A chaotic Jaya algorithm for environmental economic dispatch incorporating wind and solar power. AIMS Energy, 12, 1–30. https://doi.org/10.3934/energy.2024001 

Chaves, A., Resende, M., & Silva, R. (2024). A random-key GRASP for combinatorial optimization [Unpublished manuscript].

Estrada-Padilla, A., Gómez-Santillán, C., Fraire-Huacuja, H., Cruz-Reyes, L., Rangel-Valdez, N., Morales-Rodríguez, M., & Puga-Soberanes, H. (2022). GRASP/?: An efficient algorithm for the multi-objective portfolio optimization problem. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4070763

Farida, W., Iqbal, A., Iswahyudi, M., & Akuntansi, J. (2024). Mapping sustainable development goals (SDGs) research landscape in Indonesia: A bibliometric analysis. Jurnal Pendidikan Akuntansi & Keuangan, 12, 162–178. https://doi.org/10.17509/jpak.v12i2.69422 

Habachi, R., Touil, A., Boulal, A., Charkaoui, A., & Echchatbi, A. (2019). Economic and emission dispatch using cuckoo search algorithm. International Journal of Electrical and Computer Engineering, 9, 3384–3390. https://doi.org/10.11591/ijece.v9i5.pp3384-3390 

Hadi, I., Yola, L., Hanifa, A., & Muzhaffar, M. (2025). Decarbonization strategy towards net zero emission for international shipping on Indonesian archipelagic sea lanes. International Journal of Technology, 16, 8–26. https://doi.org/10.14716/ijtech.v16i1.7106 

Hirsch, M., Pardalos, P., & Resende, M. (2010). Speeding up continuous GRASP. European Journal of Operational Research, 205, 507–521. https://doi.org/10.1016/j.ejor.2010.02.009

Hong, Y., & Apolinario, G. (2021). Uncertainty in unit commitment in power systems: A review of models, methods, and applications. Energies, 14, 6658. https://doi.org/10.3390/en14206658 

Ikhsan, R., Raharjo, J., & Rahmat, B. (2024). Vectorized lambda iteration method for swift economic dispatch analysis. Evergreen, 11, 435–447. https://doi.org/10.5109/7172306

Intan Laily Muflikhah, Raharjo, J., & Sastrosubroto, A. S. (2024). Optimasi economic emission dispatch menggunakan whale optimization algorithm untuk penentuan biaya reduksi emisi. ELKOMIKA, 12, 468. https://doi.org/10.26760/elkomika.v12i2.468

Jayanthi, N., Sudibia, I., Dewi, M., & Yasa, I. (2024). Implementation of the sustainable development goals (SDGs) program in Indonesia: Literature review analysis. International Research Journal of Economics and Management Studies, 3, 497–502. https://doi.org/10.56472/25835238/irjems-v3i1p153 

Kamboj, V., & Malik, O. (2023). Optimal unit commitment and generation scheduling of integrated power systems with plug-in electric vehicles and renewable energy sources. Energies, 17, 123. https://doi.org/10.3390/en17010123

Kunstner, F., Portella, V., Schmidt, M., & Harvey, N. (2023). Searching for optimal per-coordinate step-sizes with multidimensional backtracking [Preprint]. NeurIPS, 36.

Laguna, M., Martí, R., Martí, M., Martinez-Gavara, A., Perez-Pelo, S., Pelo, P., & Resende, M. (2023). 20 years of GRASP with path relinking [Unverified publication].

Lup, A., Soni, V., Keenan, B., Son, J., Taghartapeh, M., Morato, M., Poya, Y., & Montañés, R. (2023). Sustainable energy technologies for the global south: Challenges and solutions toward achieving SDG 7. Environmental Science: Advances, 2, 570–585. https://doi.org/10.1039/d2va00247g 

Marouani, I., Guesmi, T., Abdallah, H., Alshammari, B., Alqunun, K., Alshammari, A., & Rahmani, S. (2022). Combined economic emission dispatch with and without consideration of PV and wind energy by using various optimization techniques: A review. Energies, 15, 4472. https://doi.org/10.3390/en15124472

Marzbani, F., & Abdelfatah, A. (2024). Economic dispatch optimization strategies and problem formulation: A comprehensive review. Energies, 17. https://doi.org/10.3390/en17030550

Minas, A. M., García-Freites, S., Walsh, C., Mukoro, V., Aberilla, J. M., April, A., Kuriakose, J., Gaete-Morales, C., Schmid, A. G., & Mander, S. (2024). Advancing sustainable development goals through energy access: Lessons from the global south. Renewable and Sustainable Energy Reviews, 199, 114457. https://doi.org/10.1016/j.rser.2024.114457

Neto, J., Reynoso-Meza, G., Ruppel, T., Mariani, V., & Coelho, L. (2017). Solving non-smooth economic dispatch by a new combination of continuous GRASP algorithm and differential evolution. International Journal of Electrical Power & Energy Systems, 84, 13–24. https://doi.org/10.1016/j.ijepes.2016.04.012

Niu, Q., You, M., Yang, Z., & Zhang, Y. (2021). Economic emission dispatch considering renewable energy resources: A multi-objective cross entropy optimization approach. Sustainability, 13, 5386. https://doi.org/10.3390/su13105386

Nuzula, V., Farida, L., & Sosial, K. (2024). Implementation of sustainable development goals (SDGs) in Indonesia from an Islamic economic perspective. Al-Tsaman: Jurnal Ekonomi dan Keuangan Islam, 6, 82–93. https://doi.org/10.62097/al-tsaman.v6i02.2006 

Okelola, M., Adekilekun, T. M., & Gafari, A. (2023). Economic dispatch problem solution of power system using artificial intelligence-based hybrid optimization method. Adeleke University Journal of Engineering and Technology, 6, 33–45.

O’Neill, M., & Wright, S. (2023). A line-search descent algorithm for strict saddle functions with complexity guarantees. Journal of Machine Learning Research, 24, 1–34.

Onibonoje, M., Alegbeleye, O., & Ojo, A. (2023). Control design and management of a distributed energy resources system. International Journal of Technology, 14, 236–245. https://doi.org/10.14716/ijtech.v14i2.5884

Oviedo-Salas, E., Terán-Villanueva, J., Ibarra-Martínez, S., Santiago-Pineda, A., Ponce-Flores, M., Laria-Menchaca, J., Castañ-Rocha, J., & Treviño-Berrones, M. (2022). GRASP optimization for the strip packing problem with flags, waste functions, and an improved restricted candidate list. Applied Sciences, 12, 1965. https://doi.org/10.3390/app12041965 

Puspitasari, K., Raharjo, J., Sastrosubroto, A., & Rahmat, B. (2022). Generator scheduling optimization involving emission to determine emission reduction costs. International Journal of Engineering, 35, 1468–1478. https://doi.org/10.5829/ije.2022.35.08b.02

Raharjo, J., Zein, H., & Adam, K. (2021). Optimal economic load dispatch with prohibited operating zones using large to small area technique. International Journal on Energy Conversion, 9, 29–34. https://doi.org/10.15866/irecon.v9i1.19548 

Resende, M., & Ribeiro, C. (2014). GRASP: Greedy randomized adaptive search procedures. In Search methodologies (pp. 287–312). Springer. https://doi.org/10.1007/978-1-4614-6940-7_11 

Resende, M., & Ribeiro, C. (2019). Greedy randomized adaptive search procedures: Advances and extensions. In International series in operations research and management science (Vol. 272, pp. 169–220). Springer. https://doi.org/10.1007/978-3-319-91086-4_6 

Ryan, B., & Bristow, D. (2023). Climate change and hygrothermal performance of building envelopes: A review on risk assessment. International Journal of Technology, 14, 1461–1475. https://doi.org/10.14716/ijtech.v14i7.6666

Saroji, G., Berawi, M., Sari, M., Madyaningarum, N., Socaningrum, J., Susantono, B., & Woodhead, R. (2022). Optimizing the development of power generation to increase the utilization of renewable energy sources. International Journal of Technology, 13, 1422–1431. https://doi.org/10.14716/ijtech.v13i7.6189

Selvakumar, K., Selvabharathi, D., Palanisamy, R., & Thentral, T. T. (2023). CO? emission-constrained short-term unit commitment problem using shuffled frog leaping algorithm. Journal of Electrical and Computer Engineering, 2023, 2336689. https://doi.org/10.1155/2023/2336689 

Shah, K., Soni, J., & Bhattacharjee, K. (2023). Artificial electric field algorithm applied to the economic load dispatch problem with valve point loading effect. International Journal of Swarm Intelligence Research, 14, 1–23. https://doi.org/10.4018/ijsir.317136

Sharifian, Y., & Abdi, H. (2023). Solving multi-area economic dispatch problem using hybrid exchange market algorithm with grasshopper optimization algorithm. Energy, 267, 126550. https://doi.org/10.1016/j.energy.2022.126550

Sharifian, Y., & Abdi, H. (2024). Multi-area economic dispatch problem: Methods, uncertainties, and future directions. Renewable and Sustainable Energy Reviews, 191, 114093. https://doi.org/10.1016/j.rser.2023.114093

Shea, B., & Schmidt, M. (2024). Greedy Newton: Newton’s method with exact line search [Preprint]. https://doi.org/10.48550/arXiv.2401.06809

Soni, J., & Bhattacharjee, K. (2022). Sooty tern optimization algorithm for solving the multi-objective dynamic economic emission dispatch problem. International Journal of Swarm Intelligence Research, 13, 1–15. https://doi.org/10.4018/ijsir.308292

Soni, J., & Bhattacharjee, K. (2023). Equilibrium optimiser for the economic load dispatch problem with multiple fuel option and renewable sources. International Journal of Ambient Energy, 44, 2386–2397. https://doi.org/10.1080/01430750.2023.2237018

Soni, J., & Bhattacharjee, K. (2024a). Equilibrium optimizer for multi-objective dynamic economic emission dispatch integration with plug-in electric vehicles and renewable sources. Multiscale and Multidisciplinary Modeling, Experiments and Design, 7, 2683–2699. https://doi.org/10.1007/s41939-023-00346-7

Soni, J., & Bhattacharjee, K. (2024b). Integrating renewable energy sources and electric vehicles in dynamic economic emission dispatch: An oppositional-based equilibrium optimizer approach. Engineering Optimization. https://doi.org/10.1080/0305215x.2023.2285896

Stanimirovi?, P., & Miladinovi?, M. (2010). Accelerated gradient descent methods with line search. Numerical Algorithms, 54, 503–520. https://doi.org/10.1007/s11075-009-9350-8 

Stefan Pfenninger-Lee, Hammoud, H., Starreveld, J., Bruninx, K., Lafeber, M., van Nieuwstadt, S., & Lukszo, Z. (2024). Economic dispatch as a linear optimisation problem. https://www.modelling-energy-systems.org/basics/dispatch-lp (Accessed March 28, 2025)

Syama, S., Ramprabhakar, J., Anand, R., & Guerrero, J. (2024). An integrated binary metaheuristic approach in dynamic unit commitment and economic emission dispatch for hybrid energy systems. Scientific Reports, 14, 1–37. https://doi.org/10.1038/s41598-024-75743-0 

Tijani, M. A., Adewale, A. M., Akinloye, O. T., & Sodiq, A. O. (2024). Economic and emission dispatch of power system using bat algorithm. 4th International Conference and Exhibition for School of Engineering.

Tsai, H., Chen, Y., & Ko, C. (2024). Advanced backtracking search for solving continuous optimization problems. Soft Computing, 28, 7905–7918. https://doi.org/10.1007/s00500-024-09716-w 

Wachjoe, C., Zein, H., & Raharjo, J. (2020). A fast scheduling method to solve economic load dispatch problem. International Review of Automatic Control, 13, 12–18. https://doi.org/10.15866/ireaco.v13i1.18130

Wance, M., Herizal, H., Alwi, A., Syahidah, U., & Damasinta, A. (2024). Trend of climate change mitigation policy publication in Indonesia: A systematic review. Journal of Government Science Studies, 3, 113–126. https://doi.org/10.30598/jgssvol3issue2page113-126

Wang, X., Wang, S., Ren, J., Song, Z., Zhang, S., & Feng, H. (2024). Optimizing economic dispatch for microgrid clusters using improved grey wolf optimization. Electronics, 13, 3139. https://doi.org/10.3390/electronics13163139

Xu, X., Hu, Z., Su, Q., Xiong, Z., & Liu, M. (2021). Multi-objective learning backtracking search algorithm for economic emission dispatch problem. Soft Computing, 25, 2433–2452. https://doi.org/10.1007/s00500-020-05312-w

Yang, W., Zhang, Y., Zhu, X., Li, K., & Yang, Z. (2024). Research on dynamic economic dispatch optimization problem based on improved grey wolf algorithm. Energies, 17, 1491. https://doi.org/10.3390/en17061491

Zagloel, T., Harwahyu, R., Maknun, I., Kusrini, E., & Whulanza, Y. (2023). Developing models and tools for exploring the synergies between energy transition and the digital economy. International Journal of Technology, 14, 1615–1622. https://doi.org/10.14716/ijtech.v14i8.6906 

Zein, H., Raharjo, J., & Mardiyanto, I. (2022). A method for completing economic load dispatch using the technique of narrowing down area. IEEE Access, 10, 30822–30831. https://doi.org/10.1109/access.2022.3158928