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Abstract: The growing demand for efficient and environmentally sustainable power genera-
tion calls for advanced optimization methods to address the economic and emission dispatch
(EED) problem. This study introduces a novel hybrid optimization approach, GRASP-BLS,
which integrates GRASP for global solution space exploration with BLS for accurate local re-
finement. The synergy between metaheuristic randomness and gradient-based precision is the
main contribution of this work, enabling GRASP-BLS to outperform conventional methods in
complex, constrained power dispatch scenarios. In a 4-h test case, GRASP-BLS reduced gener-
ation costs by 0.4% and emissions by 22.25% compared with SEA. Extended evaluations over
a 24-hour period under two scenarios—Scenario 1 (stable loads) and Scenario 2 (dynamic loads
with unit commitment)—show that GRASP-BLS consistently yields superior performance. It
achieves 5.64%–9.84% cost savings and 1.72%–4.91% emission reductions, outperforming GSA,
GWO, and PSO. Despite slightly higher computation time, GRASP-BLS satisfies all operational
constraints, including power balance, generation limits, ramp rates, and unit commitment feasi-
bility. These findings highlight the novelty and practicality of GRASP-BLS as a robust, scalable,
and adaptive framework for real-world power system optimization, particularly in environments
requiring a balance between economic efficiency and environmental responsibility.

Keywords: Backtracking line search; Economic emission Dispatch; GRASP; Optimization;
Power system.

1. Introduction

Global warming and climate change have now become global issues, with emissions being
one of the contributing factors. This encourages many countries to focus on decarbonization, a
sustainable environment, energy transition, net-zero emissions, renewable energy, and the digital
economy. Climate change is characterized by unpredictable patterns and extreme events and is
expected to continue (Ryan and Bristow, 2023). Climate change is a global threat that has begun
to put pressure on various sectors. Therefore, mitigating the impacts of climate change must be
the most important thing. Therefore, this global threat requires a global commitment to address
its dire implications to ensure global sustainability (Abbass et al., 2022). Various studies related
to climate change have begun to emerge, especially in Indonesia. The search results found that
700 articles on the issue of mitigation and climate change were published through the Crossref
and Scopus databases from January 2012 to December 2022 (Wance et al., 2024). This shows
how serious Indonesia is in contributing to the problem of climate change, considering that
Indonesia is one of the most vulnerable countries in the world to the impacts of climate change.
Indonesia faces significant challenges in reducing its impacts and promoting sustainability (Brata
and Toparakkasi, 2023). Models and tools to explore the synergy between energy transition and
the digital economy have been developed (Zagloel et al., 2023). Decarbonization toward net-zero
emissions has been published (Hadi et al., 2025).
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Meanwhile, SDGs are a global issue and have become the target of various state leaders,
including Indonesia (Farida et al., 2024), where Indonesia is very committed to the success of
the SDGs as part of sustainable economic development efforts, which are also part of global
commitments (Nuzula et al., 2024). Various research topics related to SDGs have continued
to increase in Indonesia since 2016 (Farida et al., 2024). When financing is required to meet
Indonesia’s SDG targets, innovative financing and stakeholder collaboration are crucial actions
that the government must take to accelerate the country’s progress. A gap analysis between
baseline circumstances and SDG indicator targets at the national and regional levels is necessary
as an integral component of efforts to achieve the SDGs, including planning aspects (Jayanthi
et al., 2024).

The seventh SDG, namely, clean and affordable energy, is one of the SDGs agendas. For
this purpose, five challenges need global attention: limiting the use of fossil fuels; migration to
a diverse and renewable energy matrix; decentralization of energy generation and distribution;
maximizing energy efficiency and energy storage; and minimizing the cost of energy generation
from chemical processes (Lup et al., 2023). The growing environmental awareness recently
has driven many countries to develop strategies to minimize GHG emissions by increasing the
share of new and renewable energy sources (Saroji et al., 2022). The need for a sustainable
environment is crucial; this has encouraged research on the design, development, testing, and
commissioning of smart grid solar-powered distributed energy resource systems as an alternative
to powering loads with conventional energy sources, creating pollution-free and self-sufficient
systems that can be built according to the required load capacity (Onibonoje et al., 2023).
A critical review and impact analysis of energy access projects has been carried out based
on empirical research from eight country case studies in Africa, Asia, and Latin America. The
recommendations include bridging the gap between rural and urban areas, ensuring that energy is
connected to sustainable outcomes, striking a balance between top-down and bottom-up agendas,
and evaluating the effects of techno-economic factors (Minas et al., 2024). Emissions can be
generated from transportation, industry, household, and electricity generation sectors. Power
plant scheduling with the aim of minimizing fuel costs or what is known as economic dispatch
(ED) has been widely published, from simple to more complex algorithms. The simpler the
ED formulation, the easier the optimization algorithm used (Marzbani and Abdelfatah, 2024).
However, in MOO, more sophisticated approaches, such as uncertainty modeling and AI-based
methods, are used. Although these sophisticated algorithms are efficient in handling complex
problems, they also have higher computational requirements (Marzbani and Abdelfatah, 2024).

Hybrid methods involving artificial intelligence, namely, the PSO method combined with
the Bat Algorithm (hybrid PS-BA), gave 0.281% better results than PSO alone (Okelola et al.,
2023). A new meta-heuristic algorithm based on a combination of the exchange market algorithm
and the grasshopper optimization algorithm was published to solve the multi-area economic dis-
patch (MAED) problem (Sharifian and Abdi, 2023). The proposed method, namely the hybrid
exchange market algorithm with grasshopper optimization, reduced fuel costs from 0.0229% to
1.1622% compared to the best results reported in the literature. An improved butterfly opti-
mization algorithm (IBOA) to reduce load provisioning costs was published (Alhasnawi et al.,
2023). In this case, the coefficients are not constant and will change as the simulation progresses,
showing that the use of IBOA increased the total electricity cost, peak load, PAR, and waiting
time by 3850.61 (cents), 20.1245 (kW), 6.7922 (kW), and 53 seconds, respectively.

Yang et al., 2024 focused on the improved gray wolf optimization algorithm (IGWO) and
the use of the improved algorithm to optimize the unit fuel cost, considering the transmission
loss and valve point effect (Yang et al., 2024). The IGWO was applied to three distinct ED
case scales and contrasted with other approaches that have been documented in the literature.
The findings demonstrated that the suggested IGWO efficiently lowers the unit fuel cost and
has a faster convergence rate and superior global optimization capability (Yang et al., 2024).
The proposed scheduling strategy, objective model, and solution algorithm can successfully
accomplish multi-objective coordinated optimization scheduling for microgrid clusters (MGC)
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systems, which greatly enhances the overall economic benefits of MGCs while guaranteeing
a reliable power supply. Wang et al., 2024 published IGWO to address the ED problem in
microgrid clusters.

Multi-area ED optimization involves prohibited operation zones (POZs) (Raharjo et al.,
2021; Sharifian and Abdi, 2024). The primary goal of the MAED problem is to find the ideal
quantity of generation and power exchange between nearby areas while minimizing generation
and transmission costs while meeting a number of operational and physical restrictions (Sharifian
and Abdi, 2024). The solution of the MAED problem using the large-to-small-area technique
(LSAT) method was proposed (Raharjo et al., 2021). The results of the LSAT method out-
perform the GA and are very close to the results of the Lambda Iteration (LI) and Dynamic
Programming (DP) methods. The basic principle of LSAT is to reduce the possible area, which
is the location of a number of candidate solutions, until the optimal point is obtained (Raharjo
et al., 2021). (Zein et al., 2022) proposed a ToNDA-based solution to the MAED problem.
The ToNDA method is applied to ED with discounted quadratic fuel costs with 10 generators,
where ToNDA shows better performance than SAMF, PSO, HM, HNN, and HGA. ToND is
also applied to ED with VPE in 13 power plants, and the results outperform the QPSO, SSA,
IPSO-TVAC, HCRO-DE, DSD, SHDE, HGA, and FAPSO-VDE methods. When applied to a
system with large units (40 units), ToNDA is superior to QPSO and HGA, while there is a
difference of 0.00028% when compared to DSD.

The solution of the ED problem using the calculus-based optimization method has also
been proposed (Ikhsan et al., 2024; Wachjoe et al., 2020). The VLIM method was applied
to 15 and 42 power plants (Ikhsan et al., 2024). VLIM outperformed the Lambda Iteration
Method-Gravitational Search Algorithm (LIM-GSA), Artificial Bee Colony (ABC), and Genetic
Algorithm (GA). Meanwhile, Wachjoe et al., 2020 proposed fast scheduling to solve the ED
problem, where the proposed method simulates the economic load dispatch for a 26-Bus power
system and 6-generation units. After being compared with the GA, the proposed method can
save fuel cost significantly around US$29876.46 in 24 hours, while the computation time in
executing the application program is quite short, which is 0.15 seconds.

In line with the emission of power plants, which is one of the contributors of greenhouse
gases, the scheduling of power plants not only aims to get the cheapest fuel costs, such as in
the case of ED, but also the emissions produced need to be optimized, which is often called
economic and emission dispatch (EED). Research on EED has also been widely published. The
bat algorithm is applied in Nigeria’s 28-bus electricity system (Tijani et al., 2024). EEDs
involving renewable energy sources have been published (Aswan et al., 2019), revealing various
advantages and disadvantages of various methods such as: GA, ABC, PSO, DE, HBMO, CSO,
and GSA. Another artificial method, the chaotic Jaya algorithm, is also applied to solve EED
problems involving renewable energy sources, such as wind and solar panels (Chaudhary et al.,
2024). The impact of integrating the uncertain nature of wind and solar photovoltaic power
systems on the optimal scheduling of two complex test systems is modeled using probabilistic
cost functions, using a single objective/multi-objective model (Chaudhary et al., 2024). Niu et
al., 2021 proposed a modified multi-objective cross-entropy algorithm (MMOCE) to solve EED
problems containing renewable energy. They showed that the proposed MMOCE is superior
to other multi-objective cross-entropy algorithms and published heuristic methods in all test
systems.

(Habachi et al., 2019) published the cuckoo search algorithm (CSA) to solve the EED
problem, where CSA can handle the nonlinearity of the ED problem and minimize the cost,
total power loss in transmission and maximize the reliability of power provided to customers.
Various classical, non-conventional, and hybrid methods have been proposed to solve the EED
problem with and without renewable energy (in this case, PV and wind turbine) (Marouani
et al., 2022), revealing that hybrid and non-conventional methods are safer and more effective
in solving the EED problem.

Various optimization techniques are applied to ELD and DEED problems in power systems.
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The CRO method effectively simulates molecular interactions to improve solution quality and
computational efficiency in ELD problems, considering complex constraints such as ramp rate
limits and prohibited operating zones (Bhattacharjee et al., 2014). Similarly, the AEFA leverages
physics-based principles to achieve global optimal solutions while avoiding local minima (Shah
et al., 2023). Inspired by swarm intelligence, the Sooty Tern Optimization Algorithm (STOA)
enhances DEED performance by efficiently balancing fuel costs and emission reductions (Soni
and Bhattacharjee, 2022). These algorithms are robust and superior to existing methods, making
them valuable for solving nonlinear and constrained optimization problems in power system
operations.

Furthermore, recent studies have integrated renewable energy sources (RES) and plug-
in electric vehicles (PEVs) into dispatch models to address sustainability concerns (Soni and
Bhattacharjee, 2024a). The EO and OEO approaches optimize power dispatch by managing
uncertainties in wind and solar power generation using Weibull and beta distributions. The
WSPEV DEED model innovatively incorporates RES and PEVs, smoothing charging and dis-
charging cycles while handling the economic and environmental trade-offs in power grids (Soni
and Bhattacharjee, 2024b). These techniques improve efficiency and reduce emissions by in-
corporating multiple fuel options and hybrid power sources, demonstrating the potential for
sustainable, cost-effective energy management (Soni and Bhattacharjee, 2023). The compara-
tive results validate these optimization strategies and highlight their effectiveness in addressing
the challenges of modern power systems.

In addition to the optimization algorithm, the testing scenario is designed to realistically
reflect actual power system conditions, capturing the true operational challenges in generator
scheduling. The applied dispatch strategy ensures not only mathematical optimization but
also practical feasibility in real-world power system operations by considering variations in load
and generator operational constraints (Hong and Apolinario, 2021; Kamboj and Malik, 2023;
Selvakumar et al., 2023). In a power system, when the minimum demand matches the total
minimum generation capacity of all committed units, regular load conditions occur. Under
these conditions, generation scheduling can be managed without requiring unit commitment, as
the total demand remains at least equal to the minimum operational levels of all generators,
allowing them to function efficiently within their limits. However, when the load falls below this
threshold, the demand becomes lower than the combined minimum output of all available units.
In such cases, keeping all units operational would lead to excessive generation, resulting in higher
operational costs and inefficiencies due to unnecessary fuel consumption and increased generator
wear. A unit commitment strategy must be applied to address this issue, selectively turning off
certain generators while ensuring compliance with operational constraints such as ramp rates,
minimum up/down times, and system reliability requirements. The on/off decision is not solely
based on load balancing but also involves cost-effective power generation redistribution. In this
process, cheaper units are prioritized to operate at full capacity, whereas more expensive units are
deactivated to minimize overall costs. Additionally, whenever possible, unit selection is further
optimized to strike a balance between cost and emissions (Selvakumar et al., 2023; Syama et
al., 2024), ensuring a more sustainable and economical dispatch strategy. The dispatch process
becomes more cost-efficient by implementing intelligent unit commitment, preventing excessive
power generation while maintaining system stability, economic efficiency, and environmental
sustainability.

Building upon this foundation, Scenarios 0–2 are used to comprehensively evaluate the
performance of the proposed GRASP-BLS algorithm across a range of realistic and progressively
complex power system conditions. Each scenario is designed to reflect a distinct operational
challenge. Scenario 0 serves as a benchmarking case against existing methods under normal
load conditions, where the combined minimum generation limits exceed the total power demand.
All units remain active, and unit commitment is not required, providing a stable environment
for cost and emission optimization performance assessment. Scenario 1 simulates a reduced
load condition in which the demand falls below the total minimum generation capacity. This



International Journal of Technology 16(6) 2005-2024 (2025) 2009

condition requires the algorithm to make unit commitment decisions—selectively deactivating
certain generators while satisfying constraints such as ramp rates and generation limits. Scenario
2 introduces additional complexities, including dynamic load variations and stricter operational
constraints, to represent a more realistic and constrained dispatch environment. Together, these
scenarios demonstrate the GRASP-BLS algorithm’s robustness, scalability, and adaptability in
handling both standard and challenging power system operations.

The EED results can be used to calculate the cost of emission reduction as published (Intan
Laily Muflikhah et al., 2024; Puspitasari et al., 2022). Using the simulated annealing (SA)
method, it costs US$258.81 to reduce 1 ton of emissions (Puspitasari et al., 2022), while the
whale optimization algorithm (WOA) provides better performance than SA, which only costs
57.52% of the SA cost for the same thing (Intan Laily Muflikhah et al., 2024), assuming an
exchange rate of US$1 equal to IDR 16,221.90), on January 8, 2024.

The main motivation and novelty of this paper lie in the synergistic integration of GRASP
for global exploration and BLS for local exploitation. By leveraging GRASP’s ability to di-
versify the search space while allowing BLS to refine solutions within a more focused region,
this combination enhances both computational efficiency and solution quality. Additionally, the
framework employs central finite difference methods to calculate gradients locally for each di-
mension, ensuring accurate derivative estimates that contribute to better solution refinement.
Another key innovation is the modular system design, which enables seamless adaptation to
varying numbers of generating units and demand levels, making the approach highly scalable.
Furthermore, candidate solutions are probabilistically reduced during the GRASP constructive
phase, accelerating the optimization process without compromising solution quality.

2. Methodology

The Methodology section encompasses a comprehensive exploration of datasets, including
detailed analyses of load characteristics, such as hourly load patterns, and specific profiles of
demand fluctuations. It further delves into the characteristics of the generator, highlighting
aspects such as coefficient costs, coefficient emissions, and operational constraints. Additionally,
this chapter provides an in-depth discussion of the algorithms used, describing their method-
ologies, underlying principles, and how they are applied to model, analyze, or optimize the
interactions between loads and generators in the system.

2.1 Size of the datasets

This dataset is sourced from Puspitasari et al., 2022, which serves as a critical foundation
for this study by providing detailed information on various generator parameters. It includes
not only the cost coefficients, which reflect the economic aspects of generator operation, but
also the emission coefficients, which highlight the energy production’s environmental impact.
As illustrated in Table S1, these parameters enable a dual-perspective analysis that integrates
economic efficiency and sustainability considerations. The dataset offers a robust framework for
evaluating trade-offs between operational costs and environmental responsibilities by incorporat-
ing both cost and emission coefficients, ensuring a balanced approach to generator performance
assessment in real-world scenarios. This multidimensional perspective enhances the overall un-
derstanding and supports informed decision-making in the optimization of generator operations.

Figure S1 illustrates the hourly load pattern over a 24-hour period, providing a detailed
visualization of the simulated data used to test the system’s reliability in managing load fluc-
tuations throughout the day. This simulated dataset serves as a critical component for evaluat-
ing system performance under various operational conditions. To capture different operational
strategies, the load pattern is divided into two distinct scenarios. In Scenario 1, the load profile
is designed for a system that does not involve unit commitment, allowing for a simplified load
and generation balancing analysis without considering unit-specific constraints. This scenario
provides a baseline for understanding system behavior under conditions that are less restrictive.
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In Scenario 2, the load pattern is constructed to reflect a system that incorporates unit com-
mitment. This scenario introduces more complexity by including operational constraints, such
as the committed units’ minimum generation levels. Specifically, the load is intentionally set
below the total minimum generation capacity of all units during certain hours, creating a chal-
lenging condition to test the system’s flexibility and ability to adapt to such constraints. The
simulation compares the two scenarios to highlight differences in system reliability, efficiency,
and feasibility under unit commitment constraints. This comprehensive approach ensures that
the system’s capabilities in addressing dynamic load fluctuations under varying conditions are
thoroughly evaluated.

EED is a vital aspect of power system operation that addresses the dual and often conflict-
ing objectives of minimizing power generation costs (EED) and reducing environmental impacts,
particularly greenhouse gas emissions (EED). Economic dispatch focuses on cost-effectively dis-
tributing the load among available generators while adhering to system constraints such as
generator capacities and operational limits. In contrast, emission dispatch prioritizes minimiz-
ing pollutants such as CO2, NOX , and SO2, often requiring generator output adjustments that
may lead to higher costs. Figure S2 illustrates the economic and emission dispatch inspired by
Stefan Pfenninger-Lee et al., 2024.

Integrating these objectives into a single framework creates a multi-objective optimization
problem, as minimizing costs and emissions simultaneously involves trade-offs; achieving lower
emissions might necessitate operating less economical units or adopting additional technologies.
The objective function for EED can be mathematically expressed as shown in Equation 1.

Z(P ) = w1 ·
[

n∑
i=1

ai + biPi + ciP
2
i

ε

]
+ w2 ·

[
n∑

i=1

di + eiPi + fiP
2
i

106

]
+ λ

∣∣∣∣∣
n∑

i=1
Pi − PD

∣∣∣∣∣ (1)

where:
Z(P ) : Objective function.
ai, bi, ci : Cost coefficients for generator i-th.
di, ei, fi : Emission coefficients for generator i-th.
Pi : Power output of generator i-th.
PD : Total power demand.
λ : Penalty factor for any imbalance between ∑

Pi and PD.
w1, w2 : Weight factors for cost (w1) and emissions (w2).
ε : Exchange Rate (IDR 14,385)

In addition, this study incorporates constraint functions designed to represent real-world
conditions with high fidelity. These constraints ensure that the simulation and optimization
processes closely mimic the operational realities of power systems. The power balance condition
is a key constraint, which mandates that the total power generation must always equal the total
load demand to maintain system stability. The power balance constraint can be mathematically
expressed as shown in Equation 2.

n∑
i=1

Pi = PD + PLoss (2)

where:
PLoss : Total power loss in the system.
ai, bi, ci : Cost coefficients for generator i-th.

The generation limits constraint enforces the operational boundaries of each generator,
ensuring that power output stays within specified minimum and maximum levels to prevent
overloading or inefficiency. The generator limits constraint can be mathematically expressed as
shown in Equation 3.
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P
(t+1)
i =


Pmin,i Pi(t) < Pmin,i

P
(t)
i Pmin,i ≤ Pi(t) ≤ Pmax,i

Pmax,i Pi(t) > Pmax,i

(3)

where:
Pmin,i : Minimum power output of generator i-th.
Pmax,i : Maximum power output of generator i-th.

Furthermore, the ramp rate constraint accounts for the physical limitations of generators,
restricting the rate at which power output can increase or decrease over time to reflect realistic
generator response capabilities. The ramp rate constraint can be mathematically expressed as
shown in Equation 4.

P
(t+1)
i = Pi(t + 1)

Di, P
(t)
i − P

(t−1)
i ≤ Di

Ui, P
(t)
i − P

(t−1)
i ≤ Ui

(4)

where:
P

(t+1)
i : Power output of generator i-th at time t + 1.

P
(t)
i : Power output of generator i-th at the current time t.

P
(t−1)
i : Power output of generator i-th at the previous time step

t − 1.
Di : Maximum allowable decrease in power output (down-ramp

limit) for generator i-th within one time step.
Ui : Maximum allowable increase in power output (up-ramp

limit) for generator i-th within one time step.

By incorporating these critical constraints, the study ensures that the proposed models and
methods are both practical and applicable to real-world power system operations.

In addition, two scenarios were implemented to test the reliability of the algorithm or
method used. Scenario 1 represents a condition that does not require the application of unit
commitment, allowing for a simplified analysis. Scenario 2 incorporates unit commitment, where
generators are turned on or off to adjust to the load demand, particularly during periods when
the load is below the total minimum generation capacity of all committed units. Unlike tradi-
tional unit commitment problems, this scenario solely focuses on adjusting the on/off status of
generators to align with system demand and does not account for startup or shutdown costs.
The unit commitment algorithm is mathematically expressed to determine the optimal subset
of active generators (A) required to meet a given load demand (PD) while adhering to the
generators’ physical constraints. The formulation includes the following components:

A represent the subset of active generators, defined as shown in Equation 5:

A = {i|UCi = 1, i = 1, 2, ..., n} (5)

where:
UCi : Binary variable indicating whether generator i-th is On

(UCi = 1) or Off (UCi = 0)

For any subset A, the total generation limits are computed as shown in Equations 6 to 7:

P A
min =

∑
iϵA

pmin,i (6)

P A
max =

∑
iϵA

pmax,i (7)
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The subset A must satisfy the following demand constraint, as shown in Equation 8:

P A
max ≤ PD ≤ Pmax,i (8)

This ensures that the total generation from the active units is sufficient to meet the load
demand (PD). If no feasible subset A satisfies the demand (PD), all units are turned ON as a
default condition or fallback condition, which is called the fallback strategy. This ensures that
the demand is always met, even under highly constrained conditions.

2.2 Greedy Randomized Adaptive Search Procedure with Backtracking Line Search

Recent advancements in optimization algorithms have led to significant innovations, in-
cluding the development of the GRASP and enhancements in BLS techniques. Optimization
algorithms have been extensively studied and refined to solve complex mathematical and compu-
tational problems. (O’neill and Wright, 2023) introduced a line-search descent algorithm tailored
for strict saddle functions, leveraging backtracking line search, which adapts to unknown param-
eters of the strict saddle property, to achieve the best-known worst-case complexity guarantees
for nonconvex optimization problems. Similarly, (Stanimirović and Miladinović, 2010) proposed
an accelerated gradient descent method integrated with line search to address unconstrained
optimization. Their method transforms Newton’s method by approximating the Hessian matrix
and employs backtracking to achieve linear convergence for convex functions. These founda-
tional contributions underscore the importance of efficient line search techniques in enhancing
the scalability and reliability of optimization algorithms. Metaheuristic approaches, particularly
GRASP, have also seen advancements in their applications across various domains. Neto et al.,
2017 explored GRASP combined with differential evolution to solve non-smooth economic dis-
patch problems, demonstrating improved global search capability and effectiveness in avoiding
local minima. Hirsch et al., 2010 enhanced continuous GRASP with speed optimizations and
robustness improvements for global optimization problems with box constraints. In the domain
of combinatorial optimization, Oviedo-Salas et al., 2022 applied GRASP to strip packing prob-
lems, integrating waste functions and flags to improve candidate selection. Estrada-Padilla et
al., 2022 further developed GRASP/∆, a non-evolutionary approach for multi-objective portfolio
optimization, emphasizing computational efficiency and adaptability to large search spaces.

A comprehensive review by Laguna et al., 2023 discusses two decades of GRASP research,
emphasizing its hybridization with PLR, which has proven effective for solving complex opti-
mization problems. Similarly, Chaves et al., 2024 introduced a problem-independent GRASP
using the random-key optimizer paradigm, demonstrating its adaptability across diverse com-
binatorial optimization challenges. In the domain of backtracking line search, Kunstner et al.,
2023 proposed multidimensional backtracking that optimizes per-coordinate step sizes, signifi-
cantly improving convergence in smooth convex problems. They introduced the New Q-Newton’s
method, which incorporates backtracking line search to achieve enhanced convergence guarantees
while avoiding saddle points. Additionally, Shea and Schmidt, 2024 developed “Greedy New-
ton,” a variant of Newton’s method employing exact line search. This approach achieves faster
global convergence rates while maintaining SL convergence. In addition to these developments,
recent research has focused on adaptive strategies to enhance the efficiency and convergence
properties of optimization algorithms. For instance, Cavalcanti et al., 2024 proposed an adap-
tive backtracking approach to more effectively adjust step sizes during optimization, leading to
faster convergence rates compared to traditional backtracking methods. This method replaces
the constant factor used in regular backtracking with one that considers the degree to which
the chosen criterion is violated, thereby improving optimization efficiency without additional
computational burden. Such advancements contribute to the development of more robust and
efficient optimization techniques applicable across various domains of complex problems.

The collective advancements in GRASP and BLS highlight the versatility, adaptability, and
efficiency of modern optimization techniques. GRASP has proven to be effective in solving com-
plex combinatorial optimization challenges, including NP-hard problems such as two-dimensional
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strip packing and multi-objective portfolio optimization, where hybrid and enhanced variants
such as C-GRASP and GRASP/∆ have demonstrated superior performance. Similarly, BLS
innovations, such as multidimensional backtracking and adaptive strategies, have significantly
improved convergence rates and efficiency, making them applicable to both small-scale mathe-
matical functions and large-scale industrial systems. Building on these strengths, the authors
propose a novel hybrid approach combining GRASP with BLS to address the EED problem.
This hybridization capitalizes on the adaptive exploration capabilities of GRASP and the dy-
namic step size adjustments of BLS to enhance convergence efficiency, effectively optimizing
both power generation costs and emissions reduction in a multi-objective setting.

The first section focuses on the GRASP, elaborating on its two key phases: the construction
phase, where an initial feasible solution is generated through a GRASP, and the local search
phase, which iteratively refines the solution to achieve improved quality (Resende and Ribeiro,
2014). This process is repeated for multiple iterations, with each iteration attempting to further
enhance the solution by exploring different regions of the solution space. The adaptive nature
of GRASP ensures that the method avoids being trapped in local optima by diversifying the
search space exploration. After constructing an initial solution, the local search phase aims
to improve it by exploring its neighborhood. This involves iteratively replacing the current
solution with a better one found in its vicinity until no further improvements can be made,
indicating a local minimum. The effectiveness of the local search depends on factors such as the
neighborhood structure, search strategy, and the quality of the initial solution provided by the
construction phase. GRASP balances intensification and diversification by combining these two
phases, making it a robust approach for solving complex optimization problems.

A. Constructive Phase
1. The solution is initialized as shown in Equation 9:

P = [P1, P2, ..., Pn] (9)

2. Restricted Candidate List (τ) (Resende and Ribeiro, 2019). For each unit i, define the
candidate list as shown in Equation 10:

τi = {Pi|Pmin,i ≤ Pi ≤ Pmax,i} (10)

3. Greedy selection: Choose the candidate PiBest that minimize the partial objective func-
tion is chosen, as shown in Equation 11:

P Best
i = argmin

Piϵτi
Z ([P1, P2, ..., Pn]) (11)

4. Iterate: Repeat for all units i=1, 2, . . . , n until the initial solution Pt=0 is formed.
where:
n : The number of units.
Pi : Chosen from the search space [Pmin,i, Pmax,i ]
τi : Restricted Candidate List for unit i

B. Local search phase

The second section delves into the BLS component, which is integrated into the GRASP
framework to fine-tune the solutions obtained during the local search phase. BLS operates
by iteratively adjusting the step size along the gradient direction to identify the most optimal
solution within the current solution’s vicinity. This process ensures efficient convergence by
precisely balancing the trade-off between speed and accuracy. By leveraging BLS, the hybrid
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method can navigate the highly constrained and nonlinear solution space of the economic and
emission dispatch problem, ensuring a more robust optimization process. The integration of BLS
into optimization algorithms significantly improves solution refinement during the local search
phase. For instance, Xu et al., 2021 introduced a multi-objective learning backtracking search
algorithm to address the environmental/economic dispatch problem, demonstrating improved
convergence and solution quality. Similarly, Zou et al., 2018 proposed a hybrid hierarchical back-
tracking search optimization algorithm that effectively balances exploration and exploitation in
complex optimization tasks. Additionally, Tsai et al., 2024 developed an advanced backtracking
search algorithm using single- and multi-vector mutation strategies, which resulted in enhanced
performance across various optimization problems. Collectively, these studies underscore the
efficacy of incorporating BLS into optimization frameworks to efficiently navigate and optimize
complex solution spaces.

1. Compute gradient: For each unit i, approximate the gradient using finite differences, as
shown in Figure S3.
The central finite difference can be mathematically expressed as shown in Equation 12.

▽Z(P )i = Z(P + ϵei) − Z(P − ϵei)
2ϵ

(12)

2. Update the solution using Equation 13:

▽Z(P )i = Z(P + ϵei) − Z(P − ϵei)
2ϵ

(13)

3. Use Backtracking Line Search: Determine the optimal step size using Backtracking Line
Search as follows.

a. Step size acceptance condition (Armijo condition) (Asl and Overton, 2017).
The step size must satisfy as expressed in Equation 14.

▽Z(Pi − η.▽Z(P )) ≤ Z(Pi) − α.η. ∥▽Z(P )∥2 (14)

b. Step Size Reduction: If the above condition is not met, reduce as expressed in
Equation 15.

η = β.η (15)

c. Stopping criterion: The iteration is stopped when the step size becomes smaller
than the tolerance (tol). Mathematically, it can be expressed as shown in
Equation 16.

η ≤ tol (16)

4. Stopping criterion: Stop when the condition is met as can be mathematically expressed
as shown in Equation 17.

∥∥∥P
(t+1)
i − P

∥∥∥ < tol (17)

where:
η : Step size.
∇Z(P ) : Gradient of the objective function
α : Parameter controlling objective reduction
∥∇Z(P )∥2 : Squared norm of the gradient
β : Reduction Factor (0 < β < 1)
tol : Convergence tolerance



International Journal of Technology 16(6) 2005-2024 (2025) 2015

C. Selection of the best solution
1. Solution evaluation: Calculate the objective function ZP for each candidate solution P.

2. Solution comparison: Keep the best solution as expressed in Equation 18.

P Best = argmin
P Z(P ) (18)

The following is the pseudocode representation of the Greedy Randomized Adaptive Search
Procedure (GRASP) combined with Backtracking Line Search (BLS) for solving optimization
problems such as economic and emission dispatch (EED).

3. Results and Discussion

This study includes a series of system tests to evaluate the reliability and effectiveness of
the proposed program in optimizing both operational costs and emission reductions. The tests
were conducted across two different system scenarios to thoroughly examine the performance of
the program under varying conditions.

In the first test system, we focused on benchmarking the proposed method against the
simulated annealing algorithm, as described in Puspitasari et al., 2022. This test involved a
dynamic load over a 4-hour period, allowing for a direct comparison of the program’s capability
to minimize costs and emissions under fluctuating load conditions. Benchmarking against an
established method, such as simulated annealing, provides a robust validation of the program’s
optimization capabilities and ensures its competitiveness in addressing multi-objective economic
and emission dispatch problems.

In the second test system, the evaluation was extended to a 24-hour period with the intro-
duction of two distinct load scenarios to analyze the program’s adaptability and robustness. In
Scenario 1, the load was maintained under normal operating conditions, indicating that all gen-
erators could remain operational. The main objective in this scenario was to efficiently schedule
the generators to achieve relatively low costs and emissions while ensuring that the demand was
met. In Scenario 2, the load was intentionally reduced to a level below the normal condition,
falling below the TMG limit. This created a challenging situation in which some generators
needed to be turned off to match the reduced load, effectively introducing the concept of unit
commitment. The second scenario reflects real-world operational constraints and tests the pro-
gram’s ability to handle more complex conditions, such as scheduling generators under limited
operational flexibility. This test provides insights into the program’s efficiency, reliability, and
practicality in real-world applications by evaluating both normal and reduced load conditions.
Overall, these system tests offer a comprehensive assessment of the proposed program’s ability
to balance cost optimization and emission reduction under diverse and dynamic conditions.

Table S2 provides a comprehensive overview of the parameter tuning configurations used
during the program execution across all methods. These parameters were carefully selected and
adjusted to ensure optimal performance for each method, considering the specific characteristics
and requirements of the EED problem. The table includes key tuning variables such as iteration
limits, population sizes, step sizes, and weighting factors, all of which play a crucial role in the
optimization process’s efficiency and effectiveness.

These parameters were systematically tested and adjusted to align with the constraints of
the problem, such as power balance, ramp rate, and generation limits, as well as the presented
dynamic load scenarios. This detailed account of parameter tuning underscores the methodical
approach taken to ensure a fair and accurate benchmarking process across all optimization
methods.

3.1 Scenario 0: Four-hour load demand

The study conducted in (Puspitasari et al., 2022) proposed the SA method for optimization
and demonstrated its superiority over several comparator methods using a weighted-scenario
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approach. Simulated annealing was selected as the single benchmark comparator in this study to
validate the performance of the proposed GRASP-BLS method based on its proven effectiveness.
To ensure a focused evaluation, this study used only the cost : emission weighting scenario of
1:0, prioritizing the reduction of economic costs while still assessing emission performance as a
secondary outcome.

The results of the benchmarking (Table S3) highlight the significant advantages of the
GRASP-BLS method over simulated annealing. Specifically, GRASP-BLS reduced total op-
erational costs from US$2,268,505 (under SA) to US$2,259,420, reflecting a cost reduction of
approximately 0.4%. Although this may seem modest, such reductions are significant in large-
scale energy systems, as they result in substantial absolute savings over extended operational
periods. In addition to the economic improvements, the proposed GRASP-BLS method demon-
strated a considerable reduction in emissions. The total emissions decreased from 18,733 tCO2e
(under SA) to 14,565 tCO2e, representing a significant reduction of 22.25%. This improvement
underscores the ability of GRASP-BLS to not only achieve cost savings but also deliver substan-
tial environmental benefits by lowering GHG emissions, a critical factor in sustainable energy
management.

GRASP-BLS offers a more structured and flexible approach than SA, which relies on prob-
abilistic exploration and is highly sensitive to parameter tuning, such as cooling schedules and
neighborhood structures, making it less effective for complex problems like EED. SA also lacks
a systematic local improvement mechanism, leading to slower convergence and suboptimal so-
lutions. In contrast, GRASP-BLS combines GRASP for diverse initial solution generation with
BLS for precise refinement, effectively balancing global exploration and local exploitation. This
hybrid approach enhances robustness and adaptability, particularly in real-world scenarios with
dynamic loads and multiple constraints, while also reducing parameter tuning sensitivity. Fur-
thermore, GRASP-BLS demonstrates superior scalability, efficiently handling large and complex
power systems without excessive computational requirements, whereas SA’s probabilistic nature
demands significantly more iterations as problem size increases. By offering better convergence,
cost efficiency, and emission reduction, GRASP-BLS is a more practical and effective choice for
large-scale EED optimization.

Based on the analysis presented in Table S3 and S1, all applied constraints are success-
fully satisfied without any violations throughout the optimization process, demonstrating the
robustness and precision of the proposed GRASP-BLS method in adhering to operational and
technical requirements under various scenarios. In Table S3, the power balance constraint is
fully met, ensuring that total power generation precisely matches the load demand at all times,
thereby eliminating the risk of electricity shortages that could lead to blackouts and avoiding
overproduction, which prevents unnecessary waste and inefficiency. Consequently, the PLoss
value is consistently recorded as 0 MW, indicating no system losses due to mismatched gen-
eration and demand, highlighting the algorithm’s ability to maintain a perfectly balanced and
stable system. Table S4 confirms that ramp rate constraints are also adhered to, with changes in
power output between intervals remaining within allowable ramp-up and ramp-down limits for
each generator. No sudden spikes or drops in generation levels exceeding the units’ ramp rate
capabilities are observed, ensuring smooth transitions and maintaining system stability. This
comprehensive adherence to both power balance and ramp rate constraints underscores the ef-
fectiveness of the GRASP-BLS method in managing dynamic load scenarios while respecting the
physical limitations of the generators, resulting in efficient and reliable power system operation.

3.2 Scenario 1: Dynamic loads exceeding the threshold generation levels (PD ≥∑
Pmin,i)

In Scenario 1, the system operated under normal load conditions, where the total power
demand remained within the typical operational range, allowing all generators to remain active
throughout the scheduling period. Under these conditions, no unit commitment decisions—such
as turning generators on or off—were necessary. The primary objective was to optimize the
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generator dispatch in a manner that minimized both fuel costs and emissions while strictly
satisfying the load demand at each time interval. This scenario served as a baseline for evaluating
the program’s ability to generate economical and environmentally efficient schedules in a stable
and unconstrained environment, reflecting standard day-to-day operations in real power systems.

Table S5 presents the scheduling of power generation units optimized for the most econom-
ical operation, highlighting the GRASP-BLS method’s ability to deliver cost-effective solutions.
To rigorously evaluate its effectiveness and robustness, a benchmarking process was conducted
against several well-established comparator methods, including GSA, GWO, and PSO. These
methods were independently implemented and carefully adapted to the specific scenarios and
constraints of the optimization problem, such as dynamic load scenarios, unit constraints, and
multi-objective considerations. Each comparator represents a unique optimization approach:
GSA, inspired by gravity and mass interactions, balances exploration and exploitation; GWO,
based on wolves’ social hierarchy and hunting strategies, ensures diversity while converging on
optimal solutions; and PSO, inspired by swarm behavior, is known for its efficiency and simplic-
ity in solving nonlinear problems. This diverse selection of methods provides a robust framework
for comparison, ensuring a thorough assessment of the performance of GRASP-BLS.

Table S6 highlights the performance superiority of the GRASP-BLS method over other
optimization techniques, including GSA, GWO, and PSO, in terms of both cost and emission
reduction. The results demonstrate that GRASP-BLS achieves a 5.64% reduction in cost and a
3.92% reduction in emissions compared with GSA. When benchmarked against GWO, GRASP-
BLS shows a 3.77% reduction in cost and a 2.2% reduction in emissions, while outperforming
PSO with a 4.78% cost reduction and a substantial 6.36% emission reduction. From a technical
perspective, these improvements can be attributed to the inherent strengths of GRASP-BLS,
which combines the exploratory power of GRASP with the precise refinement capabilities of BLS.
The GRASP phase enables GRASP-BLS to efficiently explore diverse regions of the solution
space, ensuring a wide search for optimal solutions. In contrast, the BLS phase fine-tunes
the solutions with gradient-based adjustments, allowing for precise convergence to high-quality
optima. This hybrid mechanism ensures that GRASP-BLS balances exploration and exploitation
more effectively than the comparator methods. GSA, while robust in balancing exploration and
exploitation through gravity-inspired mechanisms, tends to converge slower in highly constrained
problems like economic and emission dispatch (EED) due to its reliance on population dynamics,
leading to less precise cost and emission outcomes. Similarly, GWO, which is inspired by the
social hierarchy and hunting behavior of wolves, performs well in maintaining diversity but
struggles with local refinement, limiting its ability to achieve the same level of cost and emission
reductions as GRASP-BLS. Meanwhile, PSO, known for its simplicity and efficiency in handling
non-linear optimization problems, can occasionally fall into local optima due to its particle
updates lacking the BLS’s gradient-based precision.

3.3 Scenario 2: Dynamic loads below generation limits enforced by unit commit-
ment (PD <

∑
Pmin,i)

In Scenario 2, the system was subjected to a deliberately reduced load condition in which
the total demand dropped below the combined minimum generation limit of all available units.
This scenario introduced a more complex and constrained operational environment, as the sys-
tem could no longer maintain all generators in active status without causing overpenetration.
As a result, it became necessary to selectively deactivate certain generators to align the total
generation with the reduced demand, thereby incorporating the concept of unit commitment
into the optimization process. This scenario tested the program’s ability to make strategic
decisions about which units to commit or shut down while maintaining system reliability and
minimizing both operational costs and environmental impact. It reflects real-world situations
where demand fluctuations require a flexible and intelligent scheduling strategy to ensure system
efficiency under non-ideal conditions.

Table S7 illustrates the system behavior between 00:00 and 05:00, during which the load
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demand decreases below all units’ total generation limit. This scenario necessitates activating
the unit commitment process to ensure that the power supply matches the reduced demand while
adhering to operational constraints. In this period, the GRASP-BLS method demonstrates its
adaptive capability by selectively deactivating generators P3 to P8, effectively reducing the total
generation capacity to align with the lower load demand. This selective deactivation ensures
that only the required number of generators remains operational, minimizing unnecessary power
generation and operational costs. The results clearly indicate that GRASP-BLS effectively
handles the unit commitment process by optimizing the on/off status of generators, ensuring
that the total power generation precisely matches the power demand. As a result, the value of
PLoss is consistently recorded as 0 MW, which is similar to the results observed in Scenario 1,
indicating that there is no excess power or system losses. This demonstrates the GRASP-BLS’s
robustness in maintaining a perfectly balanced system, even under challenging conditions where
the load falls below the total minimum generation capacity.

The ability of GRASP-BLS to adaptively deactivate generators without violating constraints
highlights its suitability for handling Scenario 2, where frequent generator status adjustments are
required under dynamic load conditions. Unlike other methods that may struggle to effectively
manage such low-demand scenarios, GRASP-BLS optimally schedules generation units, ensuring
both stability and efficiency. These results confirm that GRASP-BLS is not only capable of
maintaining operational reliability but is also highly adaptive to real-world challenges, making
it a reliable method for managing complex and dynamic power system scenarios.

Using the same tuning as Scenario 1 (Table S5), the results in Table S8 confirm the superior
performance of GRASP-BLS in Scenario 2. It achieves notable cost and emission reductions over
all comparators: 8.17% and 3.79% vs GSA, 9.84% and 1.72% vs GWO, and 7.97% and 4.91%
vs PSO. The added challenge of unit commitment increased the cost gap with GSA, GWO, and
PSO by 2.53%, 6.07%, and 3.19%, respectively, reflecting the difficulty of deactivating generators
while maintaining balance. Emission gaps narrowed—by 0.013%, 0.48%, and 1.45%—indicating
that all methods adjusted under new constraints. Despite this, GRASP-BLS maintained clear
superiority, showing robust adaptability to dynamic load conditions and reinforcing its reliability
for real-world economic and emission dispatch.

The technical analysis of the performance shifts between GRASP-BLS and the comparator
methods (GSA, GWO, and PSO) from Scenario 1 to Scenario 2 reveals critical differences in
their adaptability and efficiency under dynamic operational conditions. Scenario 2 introduces
the added complexity of unit commitment, requiring certain generators to be deactivated when
the load demand falls below the total minimum generation capacity. In Scenario 1, GRASP-
BLS demonstrates strong performance, leveraging its hybrid approach of exploratory GRASP
and precise BLS refinement to achieve significant cost and emission reductions. The stable load
conditions in Scenario 1 enable GRASP-BLS to maximize its structured optimization process. In
Scenario 2, GRASP-BLS continues to excel by dynamically deactivating specific generators (e.g.,
P3 to P8) to align generation with reduced demand, effectively managing the added complexity
while maintaining operational reliability and superior cost and emission optimization compared
to other methods. In contrast, GSA, GWO, and PSO face notable challenges when transitioning
to Scenario 2. With its gravity-inspired mechanism, GSA achieves competitive results in Scenario
1 but struggles to handle the discrete, binary decisions required for unit commitment in Scenario
2, leading to a 2.53% higher cost difference compared to GRASP-BLS. GWO, which relies on
hierarchical social behavior, performs well in Scenario 1 but experiences a significant 6.07%
increase in cost difference with GRASP-BLS in Scenario 2 due to its limited local refinement
capabilities. PSO, known for its simplicity and efficiency, performs competitively in Scenario
1 but faces a 3.19% increase in cost difference and a 1.45% widening of the emission gap in
Scenario 2, highlighting its difficulty in optimizing emissions under complex constraints. The
observed performance shifts emphasize the adaptability of GRASP-BLS, which is driven by
its ability to dynamically adjust generator statuses, perform precise solution refinements, and
balance exploration and exploitation. These strengths enable GRASP-BLS to outperform GSA,
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GWO, and PSO, particularly in managing the unit commitment problem of Scenario 2’s discrete
and dynamic nature.

Table 1 highlights the performance of GRASP-BLS compared to GSA, GWO, and PSO
across two scenarios, focusing on cost, emissions, and computation time. In Scenario 1, GRASP-
BLS achieves the lowest total cost of $54,851,474, outperforming GSA by $3,278,549, GWO by
$2,151,234, and PSO by $2,756,304. Additionally, GRASP-BLS achieves the lowest emissions at
375,189 tCO2e, reducing emissions by 15,315 tCO2e compared with GSA, 8,460 tCO2e compared
with GWO, and 25,467 tCO2e compared with PSO. These results demonstrate GRASP-BLS’s
ability to effectively optimize both cost and emissions. However, the computation time for
GRASP-BLS in Scenario 1 is 21.95 s, which is longer than those for GSA (8.15 s), GWO (2.89
s), and PSO (0.02 s). While computationally more expensive, the significant reductions in cost
and emissions justify this trade-off.

Table 1 Cost, emission, and execution time results for all methods

Scenario Method Cost (US$) Emission (tCO2e) Comp. Time (s)

0 GRASP-BLS 2,259,420 14,565 3.69
SA 2,268,505 18,733 < 60

1

GRASP-BLS 54,851,474 375,189 21.94673
GSA 58,130,023 390,504 8.15399
GWO 57,002,708 383,649 2.89262
PSO 57,607,778 400,656 0.02120

2

GRASP-BLS 52,039,278 346,443 19.07990
GSA 56,669,115 360,080 7.93036
GWO 57,720,240 352,497 2.91943
PSO 56,547,763 364,331 0.02934

In Scenario 2, which involves unit commitment, GRASP-BLS continues to outperform the
comparator methods, achieving the lowest total cost of $52,039,278, with cost reductions of
$4,629,837 compared to GSA, $5,680,962 compared to GWO, and $4,508,485 compared to PSO.
GRASP-BLS also maintains the lowest emissions at 346,443 tCO2e, reducing emissions by 13,637
tCO2e compared to GSA, 6,054 tCO2e compared to GWO, and 17,888 tCO2e compared to PSO.
While the cost gap between GRASP-BLS and the comparator methods increases in Scenario 2
due to the complexity introduced by unit commitment, GRASP-BLS demonstrates superior
adaptability and efficiency in managing this added challenge. Although GRASP-BLS requires
a longer computation time (19.08 s) than GSA (7.93 s), GWO (2.91 s), and PSO (0.03 s),
its ability to deliver the most cost-effective and environmentally friendly solutions across both
scenarios highlights its robustness and practicality for solving complex PSO problems.

4. Conclusions and Future Works

The GRASP-BLS method demonstrates exceptional robustness, efficiency, and adaptabil-
ity in optimizing economic and emission dispatch (EED) problems by integrating the GRASP
for effective exploration with BLS for precise local refinement, ensuring consistently superior
performance across various scenarios. Compared with other optimization techniques, such
as simulated annealing (SA), gravitational search algorithm (GSA), Gray Wolf Optimization
(GWO), and particle swarm optimization (PSO), GRASP-BLS achieves notable reductions in
both cost and emissions. (1) In the four-hour load demand scenario, GRASP-BLS reduces total
cost to US$2,259,420, a 0.4% improvement over SA, while significantly cutting emissions by
22.25%, achieving 14,565 tCO2e compared to SA’s 18,733 tCO2e. (2) In Scenario 1, GRASP-
BLS achieves the lowest cost and emissions compared to GSA, GWO, and PSO, with cost
reductions of US$3.27 million, US$2.15 million, and US$2.76 million, respectively, and emission
reductions of 15,315 tCO2e, 8,460 tCO2e, and 25,467 tCO2e. Although it requires slightly more
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computation time, the significant cost-efficiency and environmental impact improvements jus-
tify this trade-off. (3) In Scenario 2, GRASP-BLS adapts dynamically, selectively deactivating
generators to maintain system balance, ensuring that no power losses (PLoss=0) occur, leading
to greater cost savings of US$4.63 million, US$5.68 million, and US$4.51 million over GSA,
GWO, and PSO, respectively, while achieving the lowest emissions with reductions of 13,637
tCO2e, 6,054 tCO2e, and 17,888 tCO2e. Despite requiring slightly more computation time, the
significant efficiency and sustainability benefits outweigh this drawback, reinforcing GRASP-
BLS as a superior optimization method for EED, excelling in minimizing costs and emissions
while maintaining robustness and adaptability under varying operational conditions. Its hybrid
structure and ability to tackle real-world power system challenges make it a highly competitive
and practical solution, outperforming traditional methods in terms of both efficiency and envi-
ronmental sustainability. Although GRASP-BLS has demonstrated outstanding performance,
future research should explore enhancing its computational efficiency to further reduce execu-
tion time without compromising solution quality. Additionally, the method can be extended to
incorporate renewable energy sources, such as wind and solar power, to address the challenges
of uncertainty and intermittency in modern power systems. Another promising direction is
the integration of ML techniques, enabling adaptive parameter tuning and self-learning capa-
bilities to improve optimization performance. Furthermore, the application of GRASP-BLS in
large-scale power networks with multi-objective optimization considerations, including reliabil-
ity, stability, and grid congestion management, would provide deeper insights into its real-world
applicability. Finally, future studies could investigate the integration of demand response strate-
gies and smart grid technologies to enhance the adaptability of GRASP-BLS in dynamic and
decentralized power systems.
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Alhasnawi, B., Jasim, B., Bureš, V., Sedhom, B., Alhasnawi, A., Abbassi, R., Alsemawai, M.,
Siano, P., & Guerrero, J. (2023). A novel economic dispatch in the stand-alone system
using improved butterfly optimization algorithm. Energy Strategy Reviews, 49, 101135.
https://doi.org/10.1016/J.ESR.2023.101135

https://doi.org/10.1007/S11356-022-19718-6
https://doi.org/10.1007/S11356-022-19718-6
https://doi.org/10.1016/J.ESR.2023.101135


International Journal of Technology 16(6) 2005-2024 (2025) 2021

Asl, A., & Overton, M. (2017). Analysis of the gradient method with an armijo-wolfe line search
on a class of nonsmooth convex functions. Optim Methods Softw, 35, 223–242. https:
//doi.org/10.1080/10556788.2019.1673388

Aswan, N., Abdullah, M., & Bakar, A. (2019). A review of combined economic emission dispatch
for optimal power dispatch with renewable energy. Indonesian Journal of Electrical En-
gineering and Computer Science, 16, 33–40. https://doi.org/10.11591/ijeecs.v16.i1.pp33-
40

Bhattacharjee, K., Bhattacharya, A., & Dey, S. (2014). Chemical reaction optimization applied
in economic dispatch problems. 1st International Conference on Automation, Control,
Energy and Systems - 2014, ACES 2014. https://doi.org/10.1109/ACES.2014.6807995

Brata, J., & Toparakkasi, F. (2023). Public policies for climate change mitigation in indonesia.
Jurnal Aktor, 2, 103–110. https://doi.org/10.26858/AKTOR.V2I3.46879

Cavalcanti, J. V., Lessard, L., & Wilson, A. (2024). Adaptive backtracking for faster optimization
[Accessed 2025].

Chaudhary, V., Dubey, H., Pandit, M., Salkuti, S., Chaudhary, V., Dubey, H., Pandit, M.,
& Salkuti, S. (2024). A chaotic jaya algorithm for environmental economic dispatch
incorporating wind and solar power. AIMS Energy, 12, 1–30. https://doi.org/10.3934/
ENERGY.2024001

Chaves, A., Resende, M., & Silva, R. (2024). A random-key grasp for combinatorial optimization
[Preprint or ArXiv (No DOI or standard publisher available in the citation)].
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