• International Journal of Technology (IJTech)
  • Vol 16, No 6 (2025)

Neuro-Fuzzy Inference System for Accurate Prediction of Z-Axis Values in Screw Installation

Neuro-Fuzzy Inference System for Accurate Prediction of Z-Axis Values in Screw Installation

Title:

Neuro-Fuzzy Inference System for Accurate Prediction of Z-Axis Values in Screw Installation

Bhakti Pradana Roesyadi, Taufik Roni Sahroni

Corresponding email:


Cite this article as:

Roesyadi, B., & Sahroni, T. (2025). Neuro-fuzzy inference system for accurate prediction of zaxis values in screw installation. International Journal of Technology, 16 (6), 1985–2004.



11
Downloads
Bhakti Pradana Roesyadi Industrial Engineering Departement, BINUS Graduate Program - Master of Industrial Engineering, Bina Nusantara University, 11480, Jakarta, Indonesia
Taufik Roni Sahroni Industrial Engineering Departement, BINUS Graduate Program - Master of Industrial Engineering, Bina Nusantara University, 11480, Jakarta, Indonesia
Email to Corresponding Author

Abstract
<p>Neuro-Fuzzy Inference System for Accurate Prediction of Z-Axis Values in Screw Installation</p>

High precision in automated screw installation is crucial for ensuring product quality and operational efficiency in modern manufacturing. A key challenge is accurately predicting the Z-axis value based on screwing depth and torque, which exhibit complex nonlinear relationships. This study proposes an Adaptive Neuro-Fuzzy Inference System (ANFIS) model to enhance predictive accuracy. Experimental data are collected by varying the mounting depth and torque and then preprocessed through normalization before training the model. The ANFIS model is designed with fuzzy membership functions and trained using a hybrid learning algorithm. The performance evaluation using the root mean squared error (RMSE) has a value of 2.52 × 10-3, indicating high prediction accuracy. Residual error analysis revealed a near-normal distribution after transformation, with skewness of 0.2672 and kurtosis of 3.1112. Error analysis on extreme Z values revealed a mean residual error of 1.34 × 10-2 for low Z (< 47.1) and 0.0091247 for high Z (> 47.4), confirming the model’s reliability. The Kruskal-Wallis test further validates ANFIS’s superiority over Support Vector Regression (SVR) and Random Forest Regression (RFR), with an H-value of 115.62 and a p-value of 0.000. The results demonstrate that ANFIS effectively captures the dependencies between input parameters and Z values, achieving minimal deviation from the actual values. This research contributes to intelligent manufacturing by enabling predictive monitoring and adaptive control. Additionally, it aligns with Sustainable Development Goal (SDG) 9 by promoting resilient infrastructure and sustainable industrialization. Future work may explore the integration of real-time sensor feedback or the hybridization of ANFIS with deep learning for enhanced adaptability in dynamic industrial settings.

ANFIS; Mounting depth; Mounting torque; Predictive modelling; Precision assembly

Supplementary Material
FilenameDescription
R4-IE-7557-20251127144324.docx ---
References

AbouElaz, M., Alhasnawi, B., Sedhom, B., & Bure?s, V. (2025). Anfis-optimized control for resilient and efficient supply chain performance in smart manufacturing. Results in Engineering, 25. https://doi.org/https://doi.org/10.1016/j.rineng.2025.104262

Ajala, O. O., Oke, E. O., Odejobi, O. J., Adeoye, B. K., & Oyelade, J. O. (2023). Artifi- cial neuro-fuzzy intelligent prediction of techno-economic parameters of computer-aided scale-up for palm kernel oil based biodiesel production. Cleaner Chemical Engineering, 5, 100098. https://doi.org/https://doi.org/10.1016/j.clce.2023.100098

Akkaya, E. (2016). Anfis based prediction model for biomass heating value using proximate analysis components. Fuel, 180, 687–693. https://doi.org/https://doi.org/10.1016/j.fuel.2016.04.112

Alazzam, A., & Tashtoush, T. (2021). Lead-free solder reliability modeling using adaptive neuro- fuzzy inference system (anfis). Jordan Journal of Mechanical and Industrial Engineering, 15, 181–189.

Azad, A., Farzin, S., Kashi, H., et al. (2018). Prediction of river flow using hybrid neurofuzzy models [Received 04 May 2018; Accepted 15 November 2018; Published 23 November 2018]. Arab Journal of Geosciences, 11, 718. https://doi.org/10.1007/s12517-018-4079-0

Azhar, N. A. C., Chockalingam, P., Perumal, L., & Wen, C. C. (2023). Fuzzy logic modelling for microwave heat treatment of aluminium sheet. International Journal of Technology, 14 (2), 434–442. https://doi.org/https://doi.org/10.14716/ijtech.v14i2.5578

Castell ?oes, T. d. O., Rizol, P. M. S. R., & Nascimento, L. F. C. (2024). Association between premature birth and air pollutants using fuzzy and adaptive neuro-fuzzy inference system (anfis) techniques. Mathematics, 12 (18). https://doi.org/10.3390/math12182828

Danylova, L., Lapkovskyi, S., & Prykhodko, V. (2022). Peculiarities of calculating the diameter of the hole for setting the thread-forming part. Mechanics and Advanced Technologies, 6 (2), 151–160. https://doi.org/10.20535/2521-1943.2022.6.2.264828

Dat, T. T. K., & Phuc, T. T. (2024). Prediction of actual toolpath and enhancement of the toolpath accuracy based on identification of feedrate change characteristics of machine tool. International Journal of Technology, 15 (3), 531–543. https://doi.org/https://doi.org/10.14716/ijtech.v15i3.6363

Deshwal, S., Kumar, A., & Chhabra, D. (2020). Exercising hybrid statistical tools garsm, gaann and gaanfis to optimize fdm process parameters for tensile strength improvement. CIRP Journal of Manufacturing Science and Technology, 31, 189–199. https://doi.org/https://doi.org/10.1016/j.cirpj.2020.05.009

Dhar, A. R., Gupta, D., & Roy, S. S. (2021). Development of a bi- directional multi- input- multi-output predictive model for the fused deposition modelling process using coactive adaptive neuro-fuzzy inference system. IOP Conference Series: Materials Science and Engineering, 1136 (1), 012007. https://doi.org/10.1088/1757-899X/1136/1/012007

George, J., & Mani, G. (2024). A portrayal of sliding mode control through adaptive neuro fuzzy inference system with optimization perspective. IEEE Access, 12, 3222–3239. https://doi.org/10.1109/ACCESS.2023.3348836

Ghashami, F., & Kamyar, K. (2021). Lead-free solder reliability modeling using adaptive neurofuzzy inference system (anfis). Performance Evaluation of ANFIS and GAANFIS for Predicting Stock Market Indices, 13, 1.

Guan, W., Yi, Q., Mo, Q., Jiang, T., Wang, S., & Lei Zhao, Y. (2024). Study on the tightening scheme of electronic component screw assemblies based on finite element simulation. Journal of Physics: Conference Series, 2859 (1), 012005. https://doi.org/10.1088/1742-6596/2859/1/012005

G ?uneri, A. F., Ertay, T., & Y ?ucel, A. (2011). An approach based on anfis input selection and modeling for supplier selection problem. Expert Systems with Applications, 38 (12), 14907–14917. https://doi.org/10.1016/j.eswa.2011.05.056

Halim & Sahroni. (2023). Mooney viscosity rubber mixing process model using adaptive neurofuzzy inference system (anfis) method towards smart manufacturing. Master’s Thesis, BINUS University, Jakarta, Indonesia.

Hossain, M. S. J., & Ahmad, N. (2014). A neuro-fuzzy approach to select cutting parameters for commercial die manufacturing [10th International Conference on Mechanical Engineering, ICME 2013]. Procedia Engineering, 90, 753–759. https://doi.org/10.1016/j.proeng.2014.11.809

Hussein, A. M. (2016). Adaptive neuro-fuzzy inference system of friction factor and heat transfer nanofluid turbulent flow in a heated tube. Case Studies in Thermal Engineering, 8, 94–104. https://doi.org/10.1016/j.csite.2016.06.001

Hynes, R., & Kumar, R. (2017). Process optimization for maximizing bushing length in thermal drilling using integrated ann-sa approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39. https://doi.org/10.1007/s40430-017-0820-y

Jeffrey L. Dapito, A. Y. C. (2024). Coefficient of performance prediction model for an on-site vapor compression refrigeration system using artificial neural network. International Journal of Technology, 15 (3), 505–516. https://doi.org/10.14716/ijtech.v15i3.6728

Karaboga, D., & Kaya, E. (2019). Adaptive network based fuzzy inference system (anfis) training approaches: A comprehensive survey [Published 03 January 2018; Issue Date December 2019]. Artificial Intelligence Review, 52, 2263–2293. https://doi.org/10.1007/s10462-017-9610-2

Kassem, Y., C ? amur, H., & Bennur, K. (2018). Adaptive neuro-fuzzy inference system (anfis) and artificial neural network (ann) for predicting the kinematic viscosity and density of biodiesel-petroleum diesel blends. American Journal of Computer Science and Technology, 1 (1), 8–18. https://doi.org/10.11648/j.ajcst.20180101.12

Khorasani, A., Soleymani Y., R., Mohammad., & Safizadeh, M. (2011). Tool life prediction in face milling machining of 7075 al by using artificial neural networks (ann) and taguchi design of experiment (doe). International Journal of Engineering and Technology. https://doi.org/10.7763/IJET.2011.V3.196

Kiran, T. R., & Rajput, S. (2011). An effectiveness model for an indirect evaporative cooling (iec) system: Comparison of artificial neural networks (ann), adaptive neurofuzzy inference system (anfis) and fuzzy inference system (fis) approach. Applied Soft Computing, 11 (4), 3525–3533. https://doi.org/https://doi.org/10.1016/j.asoc.2011.01.025

Kumar, R., & Hynes, N. (2020). Prediction and optimization of surface roughness in thermal drilling using integrated anfis and ga approach. Engineering Science and Technology, an International Journal, 23 (1), 30–41. https://doi.org/10.1016/j.jestch.2019.04.011

Kumar, S., & Bansal, S. (2023). Performance evaluation of anfis and rsm in modeling biodiesel synthesis from soybean oil. Biosensors and Bioelectronics: X, 15, 100408. https://doi.org/10.1016/j.biosx.2023.100408

Liu, F., Wang, H., Shi, Q., Wang, H., Zhang, M., & Zhao, H. (2017). Comparison of an anfis and fuzzy pid control model for performance in a two-axis inertial stabilized platform. IEEE Access, 5, 12951–12962. https://doi.org/10.1109/ACCESS.2017.2723541

Liu, Y., Song, B., Zhou, X., Gao, Y., & Chen, T. (2023). An adaptive torque observer based on fuzzy inference for flexible joint application. Machines, 11 (8). https://doi.org/10.3390/machines11080794

Luis P ?erez, C. J. (2020). A proposal of an adaptive neuro-fuzzy inference system for modeling experimental data in manufacturing engineering. Mathematics, 8 (9). https://doi.org/10.3390/math8091390

Machesa, M. G. K., Tartibu, L. K., Tekweme, F. K., & Okwu, M. O. (2019). Evaluation of the stirling heat engine performance prediction using ann-pso and anfis models. 2019 6th International Conference on Soft Computing Machine Intelligence (ISCMI), 217–222. https://doi.org/10.1109/ISCMI47871.2019.9004406

Maher, I., Eltaib, M. E. H., Sarhan, A. A. D., et al. (2014). Investigation of the effect of machining parameters on the surface quality of machined brass (60/40) in cnc end milling—anfis modeling [Received 25 December 2013; Accepted 28 May 2014; Published 07 June 2014; Issue Date September 2014]. International Journal of Advanced Manufacturing Technology, 74, 531–537. https://doi.org/10.1007/s00170-014-6016-z

Melin, P., Soto, J., Castillo, O., & Soria, J. (2012). A new approach for time series prediction using ensembles of anfis models. Expert Systems with Applications, 39 (3), 3494–3506. https://doi.org/10.1016/j.eswa.2011.09.040

Mohamed, R. A. (2022). Modeling of dielectric behavior of polymers nanocomposites using adaptive neuro-fuzzy inference system (anfis) [Received 07 September 2021; Accepted 23 February 2022; Published 23 March 2022]. European Physical Journal Plus, 137, 384. https://doi.org/10.1140/epjp/s13360-022-02518-9

Mostafaei, M. (2018). Prediction of biodiesel fuel properties from its fatty acids composition using anfis approach. Fuel, 229, 227–234. https://doi.org/10.1016/j.fuel.2018.04.148

Navarro, I. (2013). Study of a neural network-based system for stability augmentation of an airplane [Master’s thesis]. Universitat Polit`ecnica de Catalunya [Accessed: 2025-01-09]. http://hdl.handle.net/2099.1/20296

Noorsaman, A., Amrializzia, D., Zulfikri, H., Revitasari, R., & Isambert, A. (2023). Machine learning algorithms for failure prediction model and operational reliability of onshore gas transmission pipelines. International Journal of Technology, 14 (3), 680–689. https://doi.org/10.14716/ijtech.v14i3.6287

Pano-Azucena, A. D., Tlelo-Cuautle, E., & Tan, S. X.-D. (2018). Prediction of chaotic time series by using anns, anfis and svms. 2018 7th International Conference on Modern Circuits and Systems Technologies (MOCAST), 1–4. https://doi.org/10.1109/MOCAST.2018.8376560

Podder, B., Banerjee, P., Kumar, K. R., & Hui, N. B. (2017). Development of anfis model for flow forming of solution annealed h30 aluminium tubes. Precision Machining IX, 261, 378–385. https://doi.org/10.4028/www.scientific.net/SSP.261.378

Rahman, A., Hassan, N., & Ihsan, S. I. (2022). Fuzzy logic controlled two speed electromagnetic gearbox for electric vehicle. International Journal of Technology, 13 (2), 297–309. https://doi.org/10.14716/ijtech.v13i2.3913

Rao, K. B., & Reddy, D. M. (2023). Fault diagnosis in rotors using adaptive neurofuzzy inference systems. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 237 (12), 2714–2728. https://doi.org/10.1177/09544062221141588

Saghaei, A., & Didehkhani, H. (2011). Developing an integrated model for the evaluation and selection of six sigma projects based on anfis and fuzzy goal programming. Expert Systems with Applications, 38 (1), 721–728. https://doi.org/10.1016/j.eswa.2010.07.024

Sarhadi, P., Rezaie, B., & Rahmani, Z. (2016). Adaptive predictive control based on adaptive neuro-fuzzy inference system for a class of nonlinear industrial processes. Journal of the Taiwan Institute of Chemical Engineers, 61, 132–137. https://doi.org/10.1016/j.jtice.2015.03.019

Sari, M., Berawi, M., Larasati, S., Susilowati, S., Susantono, B., & Woodhead, R. (2023). Developing machine learning model to predict hvac system of healthy building: A case study in indonesia. International Journal of Technology, 14 (7), 1438–1448. https://doi.org/10.14716/ijtech.v14i7.6682

Sari, M., Berawi, M. A., Larasati, S. P., Susilowati, S. I., Susantono, B., & Woodhead, R. (2023). Developing machine learning model to predict hvac system of healthy building: A case study in indonesia. International Journal of Technology, 14 (7), 1438–1448. https://doi.org/10.14716/ijtech.v14i7.6682

Saw, L. H., Ho, L. W., Yew, M. C., Yusof, F., Pambudi, N. A., Ng, T. C., & Yew, M. K. (2018). Sensitivity analysis of drill wear and optimization using adaptive neuro fuzzy –genetic algorithm technique toward sustainable machining. Journal of Cleaner Production, 172, 3289–3298. https://doi.org/10.1016/j.jclepro.2017.10.303

Shoorehdeli, M., Teshnehlab, M., & Sedigh, A. (2006). A novel training algorithm in anfis structure. 2006 American Control Conference, 6 pp.-. https://doi.org/10.1109/ACC.2006.1657525

Sri, K. S., Nayaka, R. R., & Kumar, M. V. N. S. (2023). Mechanical properties of sustainable self-healing concrete and its performance evaluation using ann and anfis models [Received 25 April 2023; Revised 11 September 2023; Accepted 12 September 2023; Published 29 September 2023]. Journal of Building Rehabilitation, 8, 99. https://doi.org/10.1007/s41024-023-00345-8

Surajudeen-Bakinde, N. T., Faruk, N., Popoola, S. I., Salman, M. A., Oloyede, A. A., Olawoyin, L. A., & Calafate, C. T. (2018). Path loss predictions for multi-transmitter radio propagation in vhf bands using adaptive neuro-fuzzy inference system. Engineering Science and Technology, an International Journal, 21 (4), 679–691. https://doi.org/10.1016/j.jestch.2018.05.013

Tsenev, V., Videkov, V., & Spasova, N. (2021). Installation of electronic modules in a housing by means of a screw assembly and assessment of the influence of the deformation of the pcb on the installed components. 2021 International Conference on Information Technologies (InfoTech), 1–4. https://doi.org/10.1109/InfoTech52438.2021.9548353

Zare, M., & Vahdati Khaki, J. (2012). Prediction of mechanical properties of a warm compacted molybdenum prealloy using artificial neural network and adaptive neurofuzzy models. Materials Design, 38, 26–31. https://doi.org/10.1016/j.matdes.2012.01.042