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Abstract: High precision in automated screw installation is crucial for ensuring product
quality and operational efficiency in modern manufacturing. A key challenge is accurately
predicting the Z-axis value based on screwing depth and torque, which exhibit complex
nonlinear relationships. This study proposes an Adaptive Neuro-Fuzzy Inference System
(ANFIS) model to enhance predictive accuracy. Experimental data are collected by vary-
ing the mounting depth and torque and then preprocessed through normalization before
training the model. The ANFIS model is designed with fuzzy membership functions and
trained using a hybrid learning algorithm. The performance evaluation using the root
mean squared error (RMSE) has a value of 2.52 x 1073, indicating high prediction ac-
curacy. Residual error analysis revealed a near-normal distribution after transformation,
with skewness of 0.2672 and kurtosis of 3.1112. Error analysis on extreme Z values revealed
a mean residual error of 1.34 x 1072 for low Z (< 47.1) and 0.0091247 for high Z (> 47.4),
confirming the model’s reliability. The Kruskal-Wallis test further validates ANFIS’s su-
periority over Support Vector Regression (SVR) and Random Forest Regression (RFR),
with an H-value of 115.62 and a p-value of 0.000. The results demonstrate that ANFIS
effectively captures the dependencies between input parameters and Z values, achieving
minimal deviation from the actual values. This research contributes to intelligent manu-
facturing by enabling predictive monitoring and adaptive control. Additionally, it aligns
with Sustainable Development Goal (SDG) 9 by promoting resilient infrastructure and
sustainable industrialization. Future work may explore the integration of real-time sensor
feedback or the hybridization of ANFIS with deep learning for enhanced adaptability in
dynamic industrial settings.

Keywords: ANFIS; Mounting depth; Mounting torque; Predictive modelling; Precision
assembly

1. Introduction

In modern manufacturing, component assembly precision is crucial for high-quality
production and operational efficiency. Accurately predicting assembly parameters, such
as depth and torque, is critical because small deviations can lead to defects and increased
costs. This research has led to a demand for intelligent systems that can model complex
relationships between inputs and outputs, improving predictive accuracy. Screw fastening,
particularly for electronic modules in compact structures, plays a vital role in ensuring
long-term reliability with minimal PCB deformation (Tsenev et al., 2021). The optimal
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hole diameter for threading is critical for high-quality joints in electronic devices (Danylova
et al., 2022), and optimized screw group fastening enhances the reliability and lifespan of
components in mechatronic systems (Guan et al., 2024). An ANFIS model is developed
to approximate the complex nonlinear relationship between input variables (e.g., real-
time data) and output variables (e.g., optimal control actions) (AbouElaz et al., 2025).
Its robust model-building process, which integrates grid partitioning, sub-clustering, and
fuzzy c-means, strengthens fuzzy inference systems (Akkaya, 2016; Deshwal et al., 2020).
ANFIS and other machine learning techniques learn patterns from data without predefined
assumptions (Noorsaman et al., 2023).

ANFIS is highly effective in predictive modeling, providing accurate predictions
aligned with experimental results (Azhar et al., 2023). It is particularly useful in screw
installation, where determining Z-axis values from depth and torque inputs improves
assembly precision (Mostafaei, 2018). ANFIS outperforms ANN in predicting mechani-
cal properties (Zare and Vahdati Khaki, 2012) and is widely used in industrial systems,
such as Dapito and Chua’s COP prediction model for refrigeration compressors (Jeffrey
L. Dapito, 2024). ANFIS excels in capturing nonlinear relationships, optimizing man-
ufacturing efficiency, and reducing reliance on costly experiments (Halim and Sahroni,
2023). It handles complex algorithms and uncertainties by leveraging experimental data
(Kiran and Rajput, 2011). The integration of ANN and fuzzy set theory allows dynamic
inference rules, making it ideal for predicting screw installation parameters (Giineri et al.,
2011). Compared with other machine learning algorithms, such as GLM, DL, DT, RF,
GBT, and SVM, ANFIS uniquely combines rule-based reasoning with adaptive learning
(Sari, Berawi, et al., 2023), excelling in nonlinear system modeling, such as automated
screw installation.

In manufacturing, toolpath inaccuracies can cause device deviations, necessitating
precise trajectory predictions (Dat and Phuc, 2024). Similarly, ANFIS enhances Z-axis
prediction accuracy in screw installation, thereby improving assembly precision. ANFIS
autonomously adjusts weights and membership functions during training by combining
the learning capabilities of ANN with fuzzy logic, minimizing prediction errors without
predefined parameters (Hynes and Kumar, 2017; Saghaei and Didehkhani, 2011). This
adaptability is crucial for tasks such as screw installation, where accurate Z-axis pre-
dictions based on depth and torque ensure product reliability. ANFIS is also effective
in machining and predicting tool life based on cutting speed, feed rate, and cut depth
(Khorasani et al., 2011). In screw installation, complex input relationships are modeled,
and conditions are optimized to minimize defects and improve efficiency. By integrat-
ing Al-driven tools, ANFIS reduces the reliance on physical trials (Hossain and Ahmad,
2014). The use of various membership functions, such as trim, trauma, and gauss, ensures
accuracy in predicting techno-economic parameters (Ajala et al., 2023). ANFIS ensures
precise predictions by aggregating and demulsifying fuzzy rule outputs, making it ideal
for modeling nonlinear relationships in screw installation and enhancing manufacturing
control (Rahman et al., 2022).

Integrating fuzzy logic and ANN in ANFIS provides an effective solution for nonlinear
systems, particularly in screw installation, where traditional models struggle with com-
plex relationships like depth and torque (Pano-Azucena et al., 2018). ANFIS combines
the computational power of neural networks with the ability of fuzzy logic to handle un-
certainty, accurately predicting Z-axis values (Kassem et al., 2018). Unlike conventional
ANN models, ANFIS simplifies modeling by overcoming hidden layer limitations and en-
hancing prediction capabilities (Melin et al., 2012). This model makes ANFIS ideal for
precision tasks such as screw installation (Alazzam and Tashtoush, 2021). ANFIS excels
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in complex, nonlinear systems because it balances fuzzy logic interpretability with ANN
adaptability (Ghashami and Kamyar, 2021). It has proven to be effective across engineer-
ing fields, surpassing fuzzy PID controllers in two-axis inertial stabilized platforms (F.
Liu et al., 2017) and predicting nonlinear behaviors without pre-training (Sarhadi et al.,
2016). In manufacturing, ANFIS outperforms conventional regression models, optimizing
process parameters in AM (Luis Pérez, 2020; Dhar et al., 2021) and improving control
efficiency in systems such as SMC for DC servo systems (George and Mani, 2024). It also
excels in torque estimation for flexible joint systems (Y. Liu et al., 2023).

ANFIS has shown high precision in detecting open cracks in rotor-bearing systems,
achieving low RMSE (Rao and Reddy, 2023). Applications include classification, rule-
based control, pattern recognition, and function approximation, particularly for complex
input-output relationships (Surajudeen-Bakinde et al., 2018). Compared with traditional
fuzzy systems, ANFIS offers superior prediction accuracy with lower error values (RMSE,
MSE, MAPE, and MAE), demonstrating its reliability (Castelloes et al., 2024). The
integration of ANN and fuzzy logic enables ANFIS to handle nonlinear systems, making
it ideal for precision tasks such as screw installation. ANFIS uses fuzzy rules to transform
data into actionable insights, simulating human intelligence and expanding its applications
(Azad et al., 2018). In machining, ANFIS outperforms regression models in predicting
energy consumption, costs, and surface quality (Podder et al., 2017). It has also accurately
predicted torque and power, proving its real-world applicability (Machesa et al., 2019)
and outperforms traditional methods in tool wear prediction (Saw et al., 2018). In screw
installation, ANFIS predicts Z-axis values based on depth and torque inputs, thereby
enhancing assembly precision (Mohamed, 2022). Membership functions, such as Gaussian
and generalized bell-shaped, reduce prediction errors and improve model accuracy (R.
Kumar and Hynes, 2020; S. Kumar and Bansal, 2023). Integration with swarm intelligence
optimization algorithms further enhances prediction accuracy (Shoorehdeli et al., 2006),
making ANFIS and ANN a reliable solution for manufacturing nonlinear data (Sri et al.,
2023). This study focuses on the Z-axis value as a critical output for screw installation,
influenced by screw depth and torque for proper fastening and structural integrity.

ANFIS provides a data-driven approach to model these nonlinear relationships, im-
proving prediction accuracy and optimizing assembly processes compared with traditional
estimation methods. ANFIS is ideal for predicting Z-axis values in screw installation, as
it effectively handles the complexities and uncertainties of the process while delivering
accurate predictions. This study focuses on using ANFIS to predict the Z-axis output,
which reflects the screw depth and torque-based assembly quality. ANFIS captures the
nonlinear relationships between these interdependent variables, thereby providing a reli-
able solution for improving prediction accuracy and assembly performance. Traditional
methods often lead to inaccurate predictions, whereas ANFIS offers more consistent re-
sults, enhancing the overall assembly process. Accurate Z-axis prediction is crucial for
ensuring the precision, structural integrity, and reliability of the assembled components.
Variations in screw depth and torque can cause deviations in the Z-axis, resulting in
defects such as improper tightening or misalignment.

ANFIS offers significant potential for optimizing process parameters, reducing er-
rors and material waste, and enhancing product quality by modeling complex nonlinear
relationships. This capability enables proactive adjustments, high-precision assembly out-
comes, and efficiency and product reliability enhancement. Although ANFIS has shown
success in industrial applications such as process optimization, quality control, and fault
detection, its use in predicting assembly outcomes with stringent accuracy requirements
remains underexplored. This literature gap presents an opportunity for innovation. This
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study explicitly aims to address this gap by evaluating the ability of ANFIS to predict
Z-axis values with high precision using real-world experimental data. The novelty of this
research lies in its systematic approach to applying ANFIS to assembly processes, par-
ticularly screw installation, where high-precision predictions are critical. This study not
only enhances assembly performance by integrating ANFIS into manufacturing systems
for predictive monitoring and adaptive control but also provides valuable insights into the
feasibility of using ANFIS for improving manufacturing outcomes.

This study aims to develop an ANFIS model for accurately predicting Z-axis values
based on screw installation depth and torque. The model’s performance is evaluated using
key metrics, such as mean squared error (MSE) and root mean squared error (RMSE), to
ensure precision in prediction. This research supports SDG 9 by fostering innovation in
manufacturing, improving predictive accuracy, and reducing assembly waste. The findings
aim to strengthen the integration of intelligent systems in HPM, offering a foundation for
future advancements in hybrid intelligent models.

2. Resarch Metchods

2.1 Research Design

This study employs a quantitative experimental design to explore the application
of the ANFIS in predicting Z-axis values in high-precision assembly processes. Figure
1 illustrates the methodology used to develop, train, and evaluate the ANFIS models
using experimental data. This study focuses on understanding the nonlinear relationship
between two input variables, namely, screw installation depth and torque, and the output
variable, namely, the Z value, which reflects the quality of the assembly result.
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Figure 1 Research Workflow Traaining and Evaluation of ANFIS Models
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2.2 Data Collection
2.2.1 Data Source

Experimental data were obtained from a machine-controlled assembly process, where
the installation depth and torque values were systematically varied, and the corresponding
7 values were measured.

2.2.2 Variables and Measurements

Input:
— Screwing depth (z): Measured in millimeters (mm) using a precision sensor.
— Screwing Torque (y): Measured in Nm using a torque measuring instrument.

Output: The value of Z will appear and be used on the Manufacturing Execution System
(MES) integrated with the machine.

To provide an overview of the dataset used for model training, a sample of the
training data is presented in Table 1 (supplementary section). The full dataset consists
of 658 data entries systematically collected from machine-controlled assembly processes.
This dataset was used to train the ANFIS model, with 80% allocated for training and
20% for validation to ensure model generalization.

2.2.3 Data Pre-processing

Min-max scaling was used to normalize the input and output values into a range
between 0 and 1, ensuring compatibility with the ANFIS model.

2.3 ANFIS model development
2.3.1 System Architecture

As shown in Figure 2, predictions are made for the Z value based on the screwing
depth and screwing torque values as outputs from ANFIS. We use 2 inputs and 1 output:

— x : Input for screwing depth value
— y : Input for the screwing torque value
— f: Output of the Z value

The ANFIS model combines fuzzy logic with AINNs to create a powerful predictive
tool (Ziane, 2024). It consists of five layers: The Membership Layer (Layer 1) fuzzi-
fies input data using predefined membership functions. Fuzzy rules in the Rule Layer
(Layer 2) determine the firing strength based on membership values. The Normalization
Layer (Layer 3) normalizes firing strengths to assess the contribution of each rule. In the
Consequent Layer (Layer 4), the model calculates rule outputs by multiplying normal-
ized strengths with linear parameters. Finally, the total output layer (Layer 5) sums the
weighted rule outputs to produce a crisp prediction. These steps allow ANFIS to accu-
rately transform input data into predictions (Karaboga and Kaya, 2019; Maher et al.,
2014). The model’s architecture consists of five main layers:
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Figure 2 Input and output ANFIS prediction

— Layer 1 : Membership Layer (Fuzzyfication Layer) In this layer, the input vari-
ables, namely, screwing depth and torque, are fuzzified using predefined membership
functions. Three types of membership functions are tested to ensure the optimal
performance of the ANFIS model: Gaussian, trapezoidal, and triangular. These
functions are selected based on their ability to effectively capture the nonlinear re-
lationships within the dataset. Each node in this layer calculates the membership
values of the input variables based on the defined fuzzy sets. The membership func-
tions for Screwing Depth (z) and Screwing Torque (y) are denoted as
pA;(xz) = membership function for input x in fuzzy set AiA;
uB;(y) = fungi keanggotaan untuck input y di fuzzy set BiB;

For example, with the sample input values:

— Screwing Depth = 8.72: Membership in fuzzy set A; : 0.9, Membership in
fuzzy set Ay : 0.8

— Screwing Torque = 0.92: Membership in fuzzy set By : 0.85, Membership in
fuzzy set By : 0.8

— Layer 2 : Rule Layer (Product Layer or Firing Strength Layer) The IF-THEN
fuzzy rules are constructed in this layer based on the input variables and their
membership functions. In this study, two primary rules are established:

Rulel: IF xis Ay andyis By, THEN f, =alz+bly+m (1)
Rule 2: IF xis Ay and y is By, THEN fy = a2z + b2y + 79 (2)

Each rule calculates the output based on linear parameters al,bl, and rl for Rule 1
and a2, b2, and r2 for Rule 2. The activation strength (firing strength) of each rule
is calculated by multiplying the membership values of the inputs using the AND
operator:

wi = pAi(z).uBi(y) (3)

For Rule 1, the API is calculated as 0.9 x 0.85 = 0.765.
For Rule 2, the API is calculated as 0.8 x 0.8 = 0.64.

— Layer 3: Normalization
The activation strengths (APIs) computed in Layer 2 are normalized in this layer.
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Normalization ensures that the sum of the activation strengths is equal to 1, and
the relative contribution of each rule is calculated. The normalization is performed
using the following formula:

_ Wi
wp =
W1 + wo

(4)

For Rule 1, the normalized value is calculated as 0.765 / (0.765 + 0.64) = 0.544.
For Rule 2, the normalized value is calculated as 0.64 / (0.765 + 0.64) = 0.456.

— Layer 4 : Defuzzy layer(Consequent layer)
This layer calculates each fuzzy rule’s output using the consequent parameters
a;,b; and r; which are adjusted during training. Each node multiplies the nor-
malized activation strength from Layer 3 by the corresponding linear input function
to determine the final output for each rule. The formula used in this layer is as
follows:

For Rule 1, with parameters al = 4,b1 = 8, and r1 = 31, the computation is as
follows: f1 = 0.544 x [(4 x 8.72) + (8 x 0.92) + 31] = 39.842.
For Rule 2, with parameters a2 = 8,02 = 9, and r2 = 45, the computation is as
follows: 2 = 0.456 x [(8 x 8.72) + (9 x 0.92) + 45] = 56.106.

— Layer 5: Total output layer
In this final layer, we compute the total output by summing the weighted outputs
from each rule. We achieve this by multiplying each normalized activation strength
from Layer 3 with the corresponding output from Layer 4 and summing them up to
produce the final Z-value prediction. The formula used is:

frotal = Z@' - fi (6)

Substituting the computed values as follows:
total = (0.544 x 39.842) 4 (0.456 x 56.106) = 47.258.

The ANFIS model combines fuzzification, rule evaluation, normalization, and de-
fuzzification to predict the Z-value and capture the nonlinear relationships between the
screwing depth and torque. Its architecture, with antecedent (nonlinear) and consequent
(linear) parameters, is ideal for precision tasks such as screw installation. The antecedent
parameters define membership functions, whereas the consequent parameters define a lin-
ear function with multipliers and additional output parameters. These parameters are
optimized using a hybrid backpropagation and least squares method. ANFIS supports
parallel computation, offering organized knowledge representation that integrates with
other systems, making it a powerful tool for complex manufacturing and engineering
challenges (Hussein, 2016; Navarro, 2013).

2.3.2 Takagi-Sugeno-Based ANFIS Implementation

The proposed ANFIS model follows the Takagi-Sugeno inference framework, which
comprises five layers with distinct computational functions. Figure 3 illustrates the model
architecture.
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Figure 3 ANFIS prediction layer visualization

2.3.3 Training Process

The ANFIS model is trained using a hybrid learning algorithm that combines gradient
descent and least squares estimation.

— Training Data: The model is trained on 80% of the dataset.

— Validation Data: We used 20% of the dataset to validate the model and prevent
overfitting.

2.3.4 Hyperparameter Selection

A hybrid optimization method will be employed to prevent overfitting, combining
gradient descent with least squares estimation to ensure stable convergence. Additionally,
experiments will be conducted to evaluate different membership functions (Gaussian,
trapezoidal, and triangular) and identify the optimal number of epochs to achieve the
best model performance. This approach prevents overfitting while ensuring high predictive
accuracy.

2.4 Model Evaluation

The performance of ANFIS is evaluated by comparing its predictive accuracy with
two benchmark regression models: random forest regression (RFR) and support vector
regression (SVR), both of which were selected for their ability to handle nonlinear rela-
tionships and provide robust regression predictions. The evaluation was conducted using
mean squared error (MSE), root mean squared error (RMSE), and mean absolute error
(MAE) to ensure a comprehensive assessment of the prediction accuracy and error dis-
tribution. In addition, the accuracy of the developed model in predicting output values
based on input data was further assessed using MAE and confusion matrix to analyze the
performance (Sari, Berawi, et al., 2023).

2.5 Experiment setup abd statistical analysis

Experiments were conducted in a controlled laboratory environment to ensure that
installation depth, installation torque, and Z value measurements were consistent. The
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ANFIS model was implemented using MATLAB for computational analysis and visualiza-
tion. Multiple trials were performed to improve reliability, and the model was validated
using a separate test set to minimize experimental variability.

To statistically validate the superiority of ANFIS over benchmark models, the Wilcoxon
Signed-Rank Test and Kruskal-Wallis Test were applied, as these non-parametric tests
are appropriate for datasets that do not follow a normal distribution. The Wilcoxon
signed-rank test was used for pairwise comparisons, whereas the Kruskal-Wallis Test as-
sessed performance differences among multiple models. Additionally, mean absolute error
(MAE) was employed alongside MSE and RMSE to offer a more interpretable evaluation
of prediction errors.

Residual analysis was performed to detect systematic errors or biases in the pre-
dictions by examining the residual distribution and identifying any patterns that could
indicate overfitting or underfitting.

3. Results and Discussion

3.1 Preprocessing Resuls
3.1.1 Normalization of the Data

Data normalization is a key preprocessing step that improves the performance of
ANFIS by ensuring that all input variables are on the same scale. Min-Max Scaling was
used to normalize inputs to a range of [0,1], as shown in Table 2 (Supplementary Section).
Normalization ensures equal contribution from all variables, preventing dominance by
those with larger values. Its benefits include the following:

o Improved training efficiency: Faster convergence by reducing numerical instability.
o Enhanced model accuracy: better generalization and reduced bias.

« Stable Membership Function Learning: Consistent input ranges allow effective fuzzy
rule learning.

In Figure 4, the visualization of the data distribution before and after normaliza-
tion illustrates how Min-Max Scaling transforms the input values into a consistent range
of [0,1], ensuring that all input variables are on the same scale. The figure compares
the original raw data distribution with the normalized data, showing how the values are
rescaled by the normalization process while preserving their relative differences. Nor-
malization maintains the inherent structure of the data while making it suitable for the
ANFIS model, which is sensitive to the scale of input variables, by preserving the relative
differences between the data points. This step improves the training efficiency, model ac-
curacy, and stability of membership function learning, ensuring that the model effectively
learns without being biased by the scale of individual features.
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3.1.2 Data Distribution

The distribution analysis of input and output variables helps assess the reliability of
the ANFIS model. The screwing depth and torque exhibit low skewness (close to normal)
and platykurtic distributions, indicating a wider spread with fewer extreme values. Mean-
while, the Z-axis output is positively skewed, indicating that the data are slightly shifted
to the right but remain platykurtic, similar to the input variables. These characteristics
confirm minimal bias in model training, although the Z-axis skewness may require further
adjustments to improve prediction accuracy.

3.2 ANFIS model performance
3.2.1 Training and Validation Results

The ANFIS model achieves high predictive accuracy for the Z value, with an average
prediction of 47.2455, close to the target of 47.20, and minimal root mean square error
(RMSE). The training error decreases rapidly from 0.0058 at Epoch 1 to 0.0040 at Epoch
20, indicating efficient learning. As shown in Table 3, the error stabilizes after Epoch 50,
reaching a minimum of 2.161 x 10~2 by Epoch 300, thereby balancing training time and
accuracy.
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Further training beyond Epoch 300 offers minimal improvement, making Epoch 300
the optimal choice for a well-generalized model. Figure 5 shows rapid learning in early

epochs, with stabilization from epoch 200 onward, achieving optimal performance by
epoch 300.

3.2.2 Comparison of MFs

The choice of MFs greatly influences the performance of ANFIS. Three MFs, namely,
Gaussian, trapezoidal, and triangular, were tested for predictive accuracy. As shown in
Table 4 (Supplementary Section), the Gaussian MF achieved the lowest final training
MSE (0.00000635), RMSE (2.52 x 1073), and MAE (7.2974 x 10~%), indicating superior
accuracy. In contrast, the Trapezoidal MF had the highest error (MSE: 7.2974 x 1074,
RMSE: 1.6425 x 10~*, MAE: 7.2974 x 10™%), while the Triangular MF performed better
but still lagged behind the Gaussian MF ((MSE: 1.6425 x 1074, RMSE: 6.83315 x 1073,
MAE: 3.06896 x 107%). These results demonstrate that the Gaussian MF is the most
effective because its smooth, continuous shape better captures the nonlinear relationships
in the screwing process, making it the optimal choice for this study.

3.3 Benchmark Model Comparison

3.3.1 Comparison between random forest regression and support vector re-
gression

ANFIS, RFR, and SVR were compared to evaluate predictive performance. As shown
in Table 5 (Supplementary Section), ANFIS with Gaussian MF achieved the lowest MSE
(6.35 x 107%), RMSE (2.52 x ~3), and MAE (7.2974 x 10~%), demonstrating superior
accuracy in predicting the Z value. RFR followed with an MSE of 9.44 x 1075 RMSE
of 3.0726 x 1073, and MAE of 4.567 x 10~%, showing slightly higher errors than ANFIS.
SVR performed the worst, with MSE of 1.243 x 10~%, RMSE of 1.11492 x 102, and
MAE of 8.8594 x 1073, struggling to capture data patterns effectively. These results
highlight the ability of ANFIS to model complex nonlinear relationships more efficiently
than traditional ML techniques, making it the preferred model for this application.
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3.3.2 Statistical analysis of significance

The Wilcoxon signed-rank test was conducted to compare the error distributions
among different predictive models: ANFIS, Random Forest Regression (RFR), and Sup-
port Vector Regression (SVR). This non-parametric test evaluates whether a statistically
significant difference exists in the median error prediction between models.

a) Wilcoxon signed-rank test results

The Wilcoxon signed-rank test compares the error distributions of different models.
As shown in Table 6 (Supplementary Section), the ANFIS and RF tests resulted
in a p-value of 0.813, indicating no significant difference between the two models.
Although both models show similar performance, the ability of ANFIS to capture
complex nonlinear relationships remains a key strength. In Table 7 (Supplemen-
tary Section), the comparison between ANFIS and SVR yielded a p-value of 0.000,
showing that ANFIS significantly outperforms SVR, with a Wilcoxon statistic of
109557.00 for ANFIS compared to 79003.00 for SVR. Similarly, Table 8 (Supple-
mentary Section) shows the comparison between random forest and SVR, which
resulted in a p-value of 0.000, confirming that random forest outperforms SVR.
However, when ANFIS is compared to random forest (Table 6), ANFIS performs
robustly, consistently delivering high-quality predictions. These results confirm that
ANFIS is the best-performing model, significantly outperforming SVR and perform-
ing comparably with random forest, excelling in capturing nonlinear relationships
and ensuring superior prediction accuracy.

b) Kruskal-Wallis Test Results

The Kruskal-Wallis test was used to compare the error medians across the three
models, as shown in Table 9 (Supplementary Section). ANFIS had the highest
median error (1.43 x 107°) and mean rank (1092.2), followed by random forest
regression (RFR) with a median of -0.0000000 and mean rank of 1077.2. SVR
had the lowest median (-4.7513 x 1073) and mean rank (793.2), indicating that
it performed the worst. Table 10 (Section S2). Confirms a significant difference
among the models, with an H-value of 115.62 and a p-value of 0.000, rejecting the
null hypothesis (H,). Mean rank analysis (from Table 9):

— ANFIS: 1092.2 (best predictive performance)
— RFR: 1077.2 (moderate predictive performance)
— SVR: 793.2 (worst predictive performance)

These findings confirm that ANFIS significantly outperforms both RFR and SVR,
demonstrating superior predictive accuracy among the three models.

3.4 Residual analysis and error distribution
3.4.1 Residual Analysis

The analysis of the residual distribution is essential for evaluating the predictive
reliability of the ANFIS model. Figure 6 presents the histogram of residual errors, while
Figure 7 displays the corresponding boxplot after applying trimming and transformation
techniques, ensuring a more refined error structure. Initially, the minimal training RMSE
achieved was 2.51917 x 1073, indicating a relatively low error magnitude. However,
further refinement is necessary to ensure that the residuals adhere to a normal distribution,
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which is a key assumption in predictive modeling. After applying the trimming and
transformation techniques, the residual error characteristics improved significantly:

— Skewness: 0.2672 (closer to 0 indicates a more symmetric distribution)

— Kurtosis: 3.1112 (closer to 3, confirming a near-normal distribution)
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Based on these results, the residual errors now conform more closely to a normal
distribution, enhancing the ANFIS model’s predictions’ robustness and interpretability.
Figure 6 validates this improvement by showing a well-distributed residual pattern. Fig-
ure 7 further confirms this with a boxplot that illustrates reduced variability and fewer
extreme outliers after trimming. Additionally, Figure 7 provides information about the
mean of the residual errors, which is 0.00033, indicating a minimal bias in the model’s
predictions after trimming.
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3.4.2 Error Analysis

Error analysis helps identify residual error distribution and model limitations. Table
11 (Supplementary Section) shows the largest prediction errors, with the highest residual
error of -5.5423 x 1072, indicating areas where the model struggles. Table 12 (Supple-
mentary Section) examines mean residual errors for extreme Z values: Low Z (< 47.1)
shows a residual error of 1.338 x 1072, and High Z (> 47.4) shows a residual error of
9.1247 x 1073, indicating a balanced error distribution. However, the larger residuals
in Table 11 highlight the need for refinement to improve predictive stability in extreme
cases.

3.5 Discussion

The ANFIS model results demonstrate a high degree of accuracy in predicting the Z-
axis values in screw installation processes. The comparison between predicted and actual
values, as shown in Figure 8 and Table 11 (Supplementary Section), indicates a strong
correlation with minimal residual errors. The nearly linear alignment of the predicted
and actual values confirms that the model effectively captures the relationship between
the screwing depth, torque, and Z values.
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Figure 8 Relationship between real output and Predicted Z values

Table 13 (Supplementary Section) shows the minimal prediction errors, which typ-
ically range from 0.0001 to 0.003, with a few exceptions above 0.005. Larger screwing
depths and torques correspond to slightly higher errors, indicating the model’s sensitivity
to input variations at higher values. For instance, the absolute errors for Z-value predic-
tions, such as 5.81 x 107* and 6.32 x 10~* mm, remain minimal. Refining the training
data for high-depth and high-torque scenarios could improve robustness. Overall, ANFIS
demonstrates high reliability for precision assembly tasks, effectively minimizes errors,
and accurately captures the relationship between screwing depth, torque, and Z-value.
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3.5.1 Interpretation of Results

Statistical analyses, including residual error distribution and error analysis, confirm
the reliability of the model. The residual distribution (Section 3.4.1) shows near-normal
characteristics with skewness of 0.2672 and kurtosis of 3.1112, enhancing the model’s
interpretability. Section 3.4.2 identifies small prediction errors, highlighting the model’s
robustness. The Kruskal-Wallis test (Section 3.3.2) confirms that ANFIS outperforms
other models, with ANFIS (1092.2) being the most precise, followed by Random Forest
(1077.2) and SVR (793.2).

3.5.2 Practical Applications

The ANFIS model’s high accuracy presents promising applications in precision assem-
bly and industrial automation, where accurate Z-axis predictions are crucial for ensuring
optimal screw installation. The findings indicate that the model can minimize assembly
defects and improve product reliability by reducing the risk of misalignment and torque-
related inconsistencies.

Furthermore, the negligible residual errors allow the model to be integrated into real-
time control systems, thereby enhancing the efficiency of automated manufacturing lines.
Manufacturers can optimize screw installation parameters, reduce material waste, and
improve production consistency by implementing this predictive approach.

3.5.3 Future Enhancements

Despite the model’s high accuracy, further improvements can be explored. Future
work can focus on integrating real-time feedback mechanisms to dynamically adjust pre-
dictions based on real-time sensor data. Additionally, expanding the dataset to include
more complex screw types and varying material properties could enhance the generaliz-
ability of the model across different industrial applications.

In conclusion, the ANFIS model effectively predicts Z-axis values in screw installation,
demonstrating superior accuracy and practical applicability in IA. The findings of this
study contribute to the advancement of intelligent manufacturing processes by providing
a reliable predictive tool for enhancing assembly precision and operational efficiency.

4. Conclusion

This study demonstrated the effectiveness of the ANFIS in predicting Z-axis values
in screw installation processes based on screwing depth and torque inputs. The model
achieved high predictive accuracy with a minimal training RMSE of 2.52 x 1073, Residual
error analysis confirmed a normal error distribution with most absolute errors below
0.005, indicating model stability. Statistical tests, including Wilcoxon and Kruskal-Wallis,
further validated the superiority of ANFIS over random forest and SVR models. These
findings highlight the potential of ANFIS for improving precision in automated screw
installation, contributing to enhanced production quality and efficiency in manufacturing
environments.
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