• International Journal of Technology (IJTech)
  • Vol 17, No 1 (2026)

Design and Simulation of a Quadruped Robot for Ground Contact Forces on Various Surfaces

Design and Simulation of a Quadruped Robot for Ground Contact Forces on Various Surfaces

Title: Design and Simulation of a Quadruped Robot for Ground Contact Forces on Various Surfaces
Zaineb Wared Matteb, Sadeq Hussein Bakhy, Nabil Hassan Hadi

Corresponding email:


Cite this article as:
Matteb, Z. W., Bakhy, S. H., & Hadi, N. H. (2026). Design and simulation of a quadruped robot for ground contact forces on various surfaces. International Journal of Technology, 17 (1), 106–119


11
Downloads
Zaineb Wared Matteb Mechanical Engineering Department, College of Engineering, University of Technology, Al-Sina’a Street, Baghdad 10066, Iraq
Sadeq Hussein Bakhy Mechanical Engineering Department, College of Engineering, University of Technology, Al-Sina’a Street, Baghdad 10066, Iraq
Nabil Hassan Hadi Aeronautical Engineering Department, College of Engineering, University of Baghdad, Baghdad 10072, Iraq
Email to Corresponding Author

Abstract
Design and Simulation of a Quadruped Robot for Ground Contact Forces on Various Surfaces

Legged robots have become a central focus in robotics research due to their superior ability to traverse rough terrains that hinder wheeled and tracked systems. One critical challenge in the design of quadruped robots is managing vertical ground contact forces during locomotion to prevent structural damage and improve efficiency. This study presents the design and analysis of a quadruped robot, focusing on the calculation of ground impact forces during movement across different surfaces. A five-bar linkage leg mechanism with two degrees of freedom per leg was modeled in MATLAB/Simulink 2023b. A physical prototype was fabricated using 3D printing with ABS material and controlled by Raspberry Pi and Arduino units. The ground contact forces were measured on hard and soft surfaces using force sensors and Wi-Fi-based data acquisition modules. The experimental results were in close agreement with the simulation data. On hard surfaces, the peak ground contact forces ranged between 12 and 14 N, indicating stable foot-ground interaction. Slight variations were observed on soft surfaces at the start of locomotion, attributed to terrain inconsistencies. The simulated forces were 6.61% higher than the experimental values on soft surfaces and 3.89% higher on hard surfaces, demonstrating high model accuracy within acceptable error margins. This study provides a comprehensive frame-work for improving quadruped robot design by integrating theoretical modeling and practical validation. The findings of this study contribute to the development of more stable and efficient robotic locomotion systems, enhancing performance across various ground types.

Dynamic modeling; Ground contact force; Ground types interaction; SimMechanicsTM; Quadruped robot

References

Ahmadizadeh, M., Shafei, A. M., & Fooladi, M. (2023). Dynamic modeling of closed-chain robotic manipulators in the presence of frictional dynamic forces: A planar case. Mechanics Based Design of Structures and Machines, 51 (8), 4347–4367. https://doi.org/https://doi.org/10.1080/15397734.2021.1966304

Alici, G. (2002). An inverse position analysis of five-bar planar parallel manipulators. Robotica, 20, 195–201. https://doi.org/https://doi.org/10.1017/S0263574701003666

Alwan, H. M., Nikolaevic, A. V., Hasan, S. F., & Vladmerovna, O. K. (2024). Kinematic and dynamic modeling based on trajectory tracking control of mobile robot with mecanum wheels. International Journal of Technology, 15 (5), e5901. https://doi.org/https://doi.org/10.14716/ijtech.v15i5.6908

Alwan, H. M., Nikolavich, A. V., Shbani, A., & Kochneva, O. V. (2025). Motion control and obstacle avoidance of mobile robot with mecanum wheels. International Journal of Technology, 16 (1). https://doi.org/https://doi.org/10.14716/ijtech.v16i1.7254

Ansari, B., & Shahnawaz, S. (2023). Modeling and control of a snake robot using simmechanics. Sukkur IBA Journal of Emerging Technologies, 6 (2), 1–10. http://doi.org/10.30537/sjet.v6i2.1378

Antonov, A., & Fomin, A. (2023). Mechanism design and inverse kinematics of a 5-dof medical assistive manipulator. International Workshop on Medical and Service Robots, 334–342. https://doi.org/10.1007/978-3-031-32446-8_36

Bakhy, S. H. (2014). Modeling of contact pressure distribution and friction limit surfaces for soft fingers in robotic grasping. Robotica, 32 (7), 1005–1015. https://doi.org/10.1016/j.rob.2014.09.010

Bakhy, S. H., Hassan, S. S., Nacy, S. M., Dermitzakis, K., & Arieta, A. H. (2013). Contact mechanics for soft robotic fingers: Modeling and experimentation. Robotica, 31 (4), 599–609. https://doi.org/https://doi.org/10.1017/S0263574713001215

Chen, Y., Sun, Q., Guo, Q., & Gong, Y. (2022). Dynamic modeling and experimental validation of a water hydraulic soft manipulator based on an improved newton–euler iterative method. Micromachines, 13 (1), 130. https://doi.org/10.3390/mi13010130

Chignoli, M., Morozov, S., & Kim, S. (2022). Rapid and reliable quadruped motion planning with omnidirectional jumping. Proceedings of the IEEE International Conference on Robotics and Automation, 6621–6627. https://doi.org/10.48550/arXiv.2111.13648

Chopra, S., Tolley, M. T., & Gravish, N. (2020). Granular jamming feet enable improved foot–ground interactions for robot mobility on deformable ground. IEEE Robotics and Automation Letters, 5 (3), 3975–3981. https://doi.org/10.1109/LRA.2020.2982361

Christie, M. D., Sun, S., Deng, L., Du, H., Zhang, S., & Li, W. (2023). Shock absorption for legged locomotion through magnetorheological leg-stiffness control. Machines, 11 (2), 236. https://doi.org/10.3390/machines11020236

Cong, Z., Wu, C., Lang, L., Wei, Q., & Ma, H. (2020). Contact force estimation method of

legged robot and its application in impedance control. IEEE Access, 8, 161175–161187.

https://doi.org/https://doi.org/10.1109/ACCESS.2020.3021080

Deng, J., Shang, W., Zhang, B., Zhen, S., & Cong, S. (2021). Dynamic model identification

of collaborative robots using a three-loop iterative method. Proceedings of the IEEE

International Conference on Advanced Robotics and Mechatronics, 937–942. https://doi.

org/https://doi.org/10.1109/ICARM52023.2021.9536165

Ding, J., Atanassov, V., Panichi, E., Kober, J., & Santina, C. D. (2024). Robust quadrupedal

jumping with impact-aware landing: Exploiting parallel elasticity. IEEE Transactions

on Robotics. https://doi.org/https://doi.org/10.1109/TRO.2024.3411988

 

Ghose, D., & Doss, A. S. A. (2023). Optimal kinematic design of a robotic lizard using four-

bar and five-bar mechanisms [arXiv preprint arXiv:2308.08151]. https://doi.org/https:

 

//doi.org/10.48550/arXiv.2308.08151

Ha, V. T., Thuong, T. T., & Thanh, N. T. (2024). Design of adjustable slider controller in

combination with a* algorithm in motion control for mobile robot. International Journal

of Technology, 15 (5), 1487–1501. https://doi.org/https://doi.org/10.14716/ijtech.v15i5.

6527

Hong, C., Tang, D., Quan, Q., Cao, Z., & Deng, Z. (2024). Energy-recoverable landing strategy

for small-scale jumping robots. Robotics and Autonomous Systems, 176, 104696. https:

//doi.org/https://doi.org/10.1016/j.robot.2024.104696

Hooper, J., Garcia, M., Pena, P., & Tekes, A. (2020). Design of a compliant jumping robot

with passive stabilizer. Proceedings of the ASME International Mechanical Engineering

Congress and Exposition, V07BT07A019. https://doi.org/https://doi.org/10.1115/

IMECE2020-23171

Kiefer, J., Ward, M., & Costello, M. (2016). Rotorcraft hard landing mitigation using robotic

landing gear. Journal of Dynamic Systems, Measurement, and Control, 138 (3), 031003.

https://doi.org/https://doi.org/10.1115/1.4032286

 

International Journal of Technology 17(1) ppp-ppp (2026) 13

Krishnamurthy, K. V., Wang, C., P, S., Sihite, E., R, A., & G, M. (2024). Optimization-free

control and ground force estimation with momentum observer for a multimodal legged

aerial robot [arXiv preprint arXiv:2411.11216]. https: //doi.org/https: //doi.org/ 10.

48550/arXiv.2411.11216

Le, H. N., & Vo, N. T. (2024). Modeling and analysis of an ruu delta robot using solidworks

and simmechanics. International Journal of Dynamics and Control, 1–13. https://doi.

org/https://doi.org/10.1007/s40435-023-01377-1

Le Mesle, V., B ?egoc, V., & Briot, S. (2023). Modeling and design of a five degrees-of-freedom delta-like robot for fast pick-and-place applications. Journal of Mechanical Design, 145 (12), 235. https://doi.org/10.1115/1.4063359

Menner, M., & Berntorp, K. (2024). Simultaneous state estimation and contact detection for legged robots by multiple-model kalman filtering [arXiv preprint arXiv:2404.03444]. https://doi.org/10.23919/ECC64448.2024.10590751

Nugroho, H. A., Cahyadi, A. I., & Ardiyanto, I. (2023). Trajectory tracking control of quadrotor using lq-servo control with simmechanics. 10 (4), 2412–2422. https://doi.org/10.5109/7160931

Qi, H., Chen, X., Yu, Z., Huang, G., Liu, Y., & Meng, L. (2023). Vertical jump of a humanoid robot with cop-guided angular momentum control and impact absorption. IEEE Transactions on Robotics, 39, 3154–3166. https://doi.org/10.1109/TRO.2023.3271136

Rusdinar, A. I., Purnama, A., Fuadi, A. Z., Adiluhung, H., Wicaksono, M., & Ningrum, R. A. (2021). Automated ultraviolet c light mobile robot for room sterilization and disinfection. International Journal of Technology, 12 (4), 854–864. https://doi.org/10.14716/ijtech.v12i4.4817

Saravana Mohan, M., Kumar, P. S. R., & Mashinini, P. M. (2024). Sustainable development of redundant articulated robot components using simscape multibody. In Sustainable machining and green manufacturing (pp. 193–219). https://doi.org/10.1002/9781394197866.ch10

Sato, R., Arita, H., & Ming, A. (2022). Pre-landing control for a legged robot based on tiptoe proximity sensor feedback. IEEE Access, 10, 21619–21630. https://doi.org/10.1109/ACCESS.2022.3153127

Silva, M. F., Machado, J. A. T., & Lopes, A. M. (2005). Modeling and simulation of artificial locomotion systems. Robotica, 23 (5), 595–606. https://doi.org/10.1017/S0263574704001195

Sombolestan, M., & Nguyen, Q. (2024). Adaptive force-based control of dynamic legged locomotion over uneven terrain. IEEE Transactions on Robotics, 40 (9), 233–233. https://doi.org/10.1109/TRO.2024.3381554

Suomalainen, M., Karayiannidis, Y., & Kyrki, V. (2022). A survey of robot manipulation in contact. Robotics and Autonomous Systems, 156, 104224. https://doi.org/10.1016/j.robot.2022.104224

Villaverde, L., & Maneetham, D. (2024). Kinematic and parametric modeling of 6dof industrial welding robot design and implementation. International Journal of Technology, 15 (4). https://doi.org/https://doi.org/10.14716/ijtech.v15i4.6559

Wang, L., Meng, F., Kang, R., Chen, X., Yu, Z., Ming, A., & Huang, Q. (2021). Design and implementation of symmetric legged robot for highly dynamic jumping and impact mitigation. Sensors, 21 (20), 6885. https://doi.org/10.3390/s21206885

Wang, Z., Chen, C., Chen, J., & Zheng, G. (2023). 3d soft-landing dynamic theoretical model of legged lander: Modeling and analysis. Aerospace, 10 (9), 811. https://doi.org/10.3390/aerospace10090811

Xie, Z., Li, L., & Luo, X. (2022). A foot-ground interaction model based on contact stability optimization for legged robot. Journal of Mechanical Science and Technology, 36 (2), 921–932. https://doi.org/10.1007/s12206-022-0139-1

Yang, J., Sun, H., An, H., & Wang, C. (2021). Impact mitigation for dynamic legged robots with steel wire transmission using nonlinear active compliance control. Proceedings of the IEEE International Conference on Robotics and Automation, 2525–2531. https://doi.org/10.48550/arXiv.2108.01481

Zhang, J., Li, M., Cao, J., Dou, Y., & Xiaoyan, X. (2023). Research on bionic jumping and soft landing of single leg system in quadruped robot. Journal of Bionic Engineering, 20 (5), 2088–2107. https://doi.org/10.1007/s42235-023-00360-y

Zhang, J., Shen, J., Liu, T., & Hong, D. (2023). Design of a jumping control framework with heuristic landing for bipedal robots. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 8502–8509. https://doi.org/https://doi.org/10.48550/arXiv.2304.00536

Zhuang, H., Wang, J., Wang, N., & Li, W. (2024). A review of foot–terrain interaction mechanics for heavy-duty legged robots. Applied Sciences, 14 (15), 6541. https://doi.org/10.3390/app14156541

Zou, Q., Zhang, D., Zhang, S., & Luo, X. (2021). Kinematic and dynamic analysis of a 3-dof parallel mechanism. International Journal of Mechanics and Materials in Design, 17 (3), 587–599. https://doi.org/10.1007/s10999-021-09548-8