Published at : 01 Apr 2022
Volume : IJtech
Vol 13, No 2 (2022)
DOI : https://doi.org/10.14716/ijtech.v13i2.5018
Joko Siswanto | Industrial Management Research Group, Industrial Technology Faculty, Bandung Institute of Technology, Jl. Ganesa 10, Bandung 40132, Indonesia |
Sinung Suakanto | Cybernetics Research Group, Telkom University, Jl. Telekomunikasi No.1, Kab. Bandung 40257, Indonesia |
Made Andriani | Industrial Management Research Group, Industrial Technology Faculty, Bandung Institute of Technology, Jl. Ganesa 10, Bandung 40132, Indonesia |
Margareta Hardiyanti | Cybernetics Research Group, Telkom University, Jl. Telekomunikasi No.1, Kab. Bandung 40257, Indonesia |
Tien Febriyanti Kusumasari | Cybernetics Research Group, Telkom University, Jl. Telekomunikasi No.1, Kab. Bandung 40257, Indonesia |
Interview for competency assessment takes essential
roles in Human Resource Management practices. However, the traditional
competency interview process needs considerable time and costs and often
requires face-to-face meetings that may endanger both interviewers and
interviewees during a pandemic. This study aims to present the development of
an interview bot for identifying competency based on the Behavioural Event
Interview method by using artificial intelligence technology. It is an
automation of the interview process to explore a person’s competencies levels
based on past behavioural experiences. The development of the interview bot
involved two main activities. The first is the data training process to develop
learning models to determine competency levels based on provided valid
participant’s responses. The second is the testing and evaluation model for
assessment to determine competency levels. We found that our method
can predict a person's competence levels based on their responses. Our approach
can make predictions with acceptable accuracy. The interview bot is a valuable
and reliable tool to conduct online interviews and support the assessment
centre process, especially with conditions of physical and social distancing
constraints. It provides flexibility in terms of time and place for
participants, and its process is delivered in Indonesia's Language. The
interview bot is more cost efficient than traditional interviews with the same
behavioural event interview methods, and it would also be preferable for
millennials.
Artificial intelligence; Behavioural event interview; Chat bot; Interview bot; Machine learning
Recognizing the importance of competencies for competitive advantages, the Government of Indonesia (GOI), as a policymaker, issued regulations that encourage both governmental and private business organizations to increase employee competencies. One of the government’s regulations is the Decree of the Employment Minister of the Republic of Indonesia, Number 2 of 2016, concerning the National Work Competency Standardization System. The statute contains a comprehensive and synergic arrangement of national work competency standards intended to improve Indonesian human resources competencies. With the issuance of the regulation, Indonesian workers must meet the established competency standards to be able to work in an organization. Therefore, organizations must regularly conduct competency assessments.
One
of the techniques that organizations can use to perform competency assessments
is a behavioural event interview (BEI). BEI is a systematic interviewing method
that is carried out in five stages: introducing and explaining the interview
process, extracting information about job responsibilities, extracting
information about behavioural events, exploring the characteristics required
for the job, and finally, drawing conclusions and summaries. In contrast to
ordinary interviews, which are considered less reliable in predicting
candidates who will perform well, BEIs can reveal detailed behavioural
descriptions of how someone does their job and thus overcome the
ineffectiveness of typical interviews. However, although BEI is a suitable
method for measuring competencies, it also has some weaknesses. For example,
the interview process takes longer, requires many certified
interviewers—trained experts are still limited in number—requires high
organizing costs, and introduces potential interviewer bias in the assessment.
Meanwhile, the need for conducting competency assessment increases in line with
the growing awareness of conducting competency assessment in companies and
organizations.
In
conducting BEIs, interviewers look for clues about the interviewee’s past
experiences. In English, these can be identified from past-tense responses.
However, Indonesian grammar is simple in the sense that it has no past-tense
pattern. Instead, it uses keywords that indicate the time or frequency of one’s
actions. Therefore, developing an interview bot that “speaks” Indonesian
presents a different challenge and requires a different approach. The fourth
Industrial Revolution has impacted automation technology development in various
fields, and technological advances are being integrated in every aspect of our
lives (Berawi, 2018). Artificial
intelligence (AI) facilitates decision-making, creates integrative systems, and
simplifies complex mechanisms though automation (Berawi,
2020). There are AI applications in many fields, including human
resource management systems. AI refers to machines’ ability to perform tasks
usually associated with human thinking, especially by using computer systems.
AI allows computers to learn from and make decisions or recommend actions based
on available data and helps to solve complex problems. AI applications can
support repetitive or patterned processes.
Likewise,
human resource management (HRM) is a viable field in which to implement
automation technology, for example, in chatbots as part of the interview
process. The weaknesses of BEI could be minimized by developing an interview
bot as a substitute for or accompaniment to interviewers or appraisers.
Moreover, such bots could conduct interviews remotely, reducing interview costs
and increasing time flexibility.
Eubanks
(2017)
reported that experimenting with short message service (SMS)-based interactions
aids in interview scheduling provided benefits. Further, the process was
undertaken by a bot, not a person. It has also been found that candidates
primarily interact with the interview bots outside of regular office hours.
Thus, the recruiters do not have to work overtime, as parts of the interview
process could be taken over by bots. In a typical automatic talent acquisition
process, the candidates interact with an interview bot, allowing the recruiters
to engage in other activities simultaneously. Recruitment chatbots cannot
respond to questions that are not expected. This could be handled by a program
that sends the questions directly to the staff responsible for answering them.
Hence, the way in which AI is used today in the recruitment process is intended
to leverage the benefits of implementing bots in various ways.
The
interview bot application for assessing competency levels is a further
development of chatbot technology. A chatbot is a computer system that operates
as an interface between human users and software applications, using natural
written and oral language to communicate. Some examples of chatbots that have
been developed are Siri, IBM Watson, and Google Assistant. A chatbot has
several advantages, including ease of access, efficiency, availability,
scalability, cost, and insight. Chatbot technology has been applied in various
fields, such as handling e-commerce queries (Pricilla
et al., 2018), web shopping helpers, hotel reservation agents, and FAQ
agents (Siddig & Hines, 2019), and various
digital consumers (Rese et al., 2020). However,
chatbot applications for supporting HRM practices remain underdeveloped.
A chatbot architecture can
be further developed to have an information retrieval function and
interactively “generate” questions by applying AI technology. This may work in
two ways and can support artificial interviews (Suakanto
et al., 2021). AI technology includes machine learning, deep learning,
neural networks, and natural language processing (NLP). Cowgill (2018) used machine learning for hiring white-collar
workers. The challenge of developing AI and machine learning for HRM is related
to the number of data sets, which tends to be relatively small by data science
standards (Tambe et al., 2019). As a branch
of AI, NLP has been employed in human interview systems. An interactive
interview bot system based on NLP was developed to conduct interviews and
generate results automatically (Yakkundi et al.,
2019). One of the critical benefits of NLP is its ability to process and
understand unstructured text data automatically.
This study has successfully developed an interview bot that
uses machine learning to determine the competence level of a person. In this
research, we use an Indonesian language dataset. To converse with human
participants, we use NLP technology. This study demonstrated very good accuracy
in various scenarios. The results of this study can be used as the basis for
developing an interview bot that is closer to professional interviews. One of
the important aspects of this system is datasets. With a more extensive and
comprehensive dataset, it is possible that the system would be richer in
information and achieve better accuracy. For future works, the system could be
enhanced to use voice interaction instead of text-based chat. The frequency,
types, and depth of the questions could also be made more adaptive to match the
psychological aspects of the interviewee.
Filename | Description |
---|---|
R1-IE-5018-20211004214556.pdf | Table 1-5 pdf |
R1-IE-5018-20211004214642.pdf | Figure 1-7 pdf |
R1-IE-5018-20211004214712.docx | Table 1-5 docx |
R1-IE-5018-20211004214932.docx | Figure 1-7 docx |
Berawi, M.A., 2018. The Fourth Industrial Revolution: Managing
Technology Development for Competitiveness. International Journal of
Technology, Volume 9(1), pp. 1–4
Berawi, M.A., 2020. Managing Artificial Intelligence Technology for
Added Value. International Journal of Technology, Volume 11(1), pp. 1–4
Cowgill, B., 2018. Bias and Productivity in Humans and Algorithms:
Theory and Evidence from Résumé Screening. Working paper, Columbia University,
New York
Eubanks, B., 2017. Artificial Intelligence for HR Use AI to Support and Develop a Successful Workforce. Kogan Page. Available online at https://books.google.com/books?hl=en&lr=&id=hrN7DwAAQBAJ&oi=fnd&pg=PP1&dq=Artificial+Intelligence+for+HR+Use+AI+to+Support+and+
Develop+a+Successful+Workforce&ots=jc5-Zm6nbw&sig=rXBsT7SPUpQbJWXMAh6O9gDxsbo
Kim, S., Lee, J., Gweon, G., 2019. Comparing Data from
Chatbot and Web Surveys: Effects of Platform and Conversational Style on Survey
Response Quality. In: Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–12
Margherita, A., 2021. Human Resources Analytics: A Systematisation of
Research Topics and Directions for Future Research. Human Resource
Management Review, Volume 32(2) p. 100795
Nawaz, N., Gomes, A.M., 2019. Artificial
Intelligence Chatbots are New Recruiters. International Journal of Advanced
Computer Science and Applications, Volume 10(9), pp. 1–5
Pereira, V., Hadjielias, E., Christofi, M., Vrontis, D., 2021. A
Systematic Literature Review on the Impact of Artificial Intelligence on
Workplace Outcomes: A Multi-Process Perspective. Human Resource Management
Review, p. 100857
Pricilla, C., Lestari, D.P., Dharma, D., 2018. Designing Interaction
for Chatbot-Based Conversational Commerce with User-Centered Design. In: 5th International Conference on
Advanced Informatics: Concept Theory and Applications (ICAICTA), IEEE, pp. 244–249
Reilly, P., 2018. The Impact of Artificial Intelligence on the HR
Function. Institue for Employment Studies. Available online at https://www.employment-studies.co.uk/system/files/resources/files/mp142_The_impact_of_Artificial_Intelligence_on_the_HR_function-Peter_Reilly.pdf
Rese, A., Ganster, L., Baier, D., 2020. Chatbots in Retailers’ Customer
Communication: How to Measure their Acceptance? Journal of Retailing
and Consumer Services, Volume 56, p. 102176
Suakanto, S., Siswanto, J., Kusumasari, T.F., Prasetyo, I.R.,
Hardiyanti, M., 2021. Interview Bot for Improving Human Resource Management.
2021 In: International Conference on
ICT for Smart Society (ICISS), IEEE, pp. 1–5
Siddig, A., Hines, A., 2019. A Psychologist Chatbot Developing
Experience. In: Proceedings of AICS,
pp. 200-211
Tambe, P., Cappelli P., Yakubovich, V., 2019. Artificial Intelligence in
Human Resources Management: Challenges and a Path Forward. California
Management Review, Volume 61(4), pp. 1–28
Yakkundi, S., Vanjare, A., Wavhal, V. and Patankar, S., 2019.
Interactive Interview Chatbot. International Research Journal of Engineering
and Technology, Volume 6(4), pp. 2746–2748