Published at : 28 Jan 2026
Volume : IJtech
Vol 17, No 1 (2026)
DOI : https://doi.org/10.14716/ijtech.v17i1.8218
| Yo Koura | Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo-to 184-8588 Japan |
| Naoya Niwa | Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo-to 184-8588 Japan |
| Hiroe Iwasaki | 1. Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo-to 184-8588 Japan 2. Tohoku University, 6-6 Aoba, Aramaki, Aoba-ku, Sendai-shi, Miyagi-ken 980-0845 Japan |
The rapid increase in video consumption, further accelerated by the coronavirus disease 2019 (COVID-19) pandemic, has driven a significant rise in demand for live streaming services and video delivery across various devices, such as smartphones and tablets. Screen size and display resolution of these devices vary widely, creating the need for flexible and efficient video transmission methods. Spatial scalable coding addresses this challenge by encoding multiple resolutions within a single bitstream, allowing devices to decode the appropriate resolution without requiring separate streams. This approach reduces redundancy and improves transmission efficiency. Versatile Video Coding (VVC), the latest international video compression standard, supports spatial scalability through its multilayer profile. VVC enhances compression performance by reusing information from lower-resolution layers; however, this added complexity increases computational overhead, particularly during encoding. In this paper, we propose an efficient block partitioning method specifically designed for scalable VVC-based coding. The method exploits structural similarities between low-resolution and high-resolution encoded data to guide partitioning decisions in the high-resolution layer, thereby reducing unnecessary computations. The experimental results demonstrate that the proposed method reduces encoding time by approximately 55%, with a BD-rate increase below 3.45%. These results validate the effectiveness of the approach in accelerating scalable video encoding without compromising visual quality, making it suitable for real-time applications and environments with limited computational resources.
Block partitioning algorithm; Spatial scalable coding; Versatile Video Coding (VVC); Video coding
| Filename | Description |
|---|---|
| EECE-8218-20251110154015.docx | --- |
Amestoy,
T., Sidaty, N., Hamidouche, W., Philippe, P., & Menard, D. (2023). Video
quality assessment and coding complexity of the versatile video coding
standard. arXiv preprint.
Bjontegaard,
G. (2001). Calculation of average psnr differences between rd-curves (tech.
rep. No. VCEG-M33). ITU-T. https://www.itu.int/md/T01-SG16-010402-TD-0033
Bonnineau,
C., Hamidouche, W., Fournier, J., Sidaty, N., Travers, J. F., & Deforges,
O. (2022). Perceptual quality assessment of hevc and vvc standards for 8k
video. IEEE Transactions on Broadcasting, 68 (1), 246–253. https://doi.org/10.1109/TBC.2022.3140710
Boyce,
J. M., Ye, Y., Chen, J., & Ramasubramonian, A. K. (2015). Overview of shvc:
Scalable extensions of the high efficiency video coding standard. IEEE
Transactions on Circuits and Systems for Video Technology, 26 (1), 20–34.
https://doi.org/10.1109/TCSVT.2015.2461951
Bross,
B., Chen, J., Ohm, J. R., Sullivan, G. J., & Wang, Y. K. (2021a).
Developments in international video coding standardization after avc, with an
overview of versatile video coding (vvc). Proceedings of the IEEE, 109 (9),
1463–1493. https://doi.org/10.1109/JPROC.2020.3043399
Bross, B., Chen, J., Ohm, J. R., Sullivan, G. J., &
Wang, Y. K. (2021b). Overview of
the versatile video coding (vvc) standard and its applications. IEEE
Transactions on Circuits and Systems for Video Technology, 31 (10), 3736–3764. https://doi.org/10.1109/TCSVT.2021.3101953
Business
Research Insights. (2024). Live streaming market size, share, and growth report
2024–2033 [Accessed 4 July 2025]. https://www.businessresearchinsights.com/market-reports/live-streaming-market-111696
Cong, Z., Liu, J., & Manchanda, P. (2021). The role of “live” in livestreaming markets: Evidence using
orthogonal random forest. arXiv.
Feldmann,
A., Gasser, O., Lichtblau, F., Pujol, E., Poese, I., Dietzel, C., Wagner, D.,
Wichtl-huber, M., Tapiador, J., Vallina-Rodriguez, N., Hohlfeld, O., &
Smaragdakis, G. (2020). The lockdown effect: Implications of the covid-19
pandemic on internet traffic. Proceedings of the ACM Internet Measurement
Conference (IMC ’20), 1–18. https://doi.org/10.1145/3419394.3423658
Fischer, W. (2020). Video coding (mpeg-2, mpeg-4/avc,
hevc). In Digital
video and audio broadcasting technology (pp. 125–175). Springer. https://doi.org/10.1007/978-3-030-32185-7_7
Fraunhofer
Heinrich-Hertz-Institut. (2014). Hevc scalability extension (shvc) [Accessed 4
July 2025]. https://hevc.hhi.fraunhofer.de/shvc
Grois,
D., Giladi, A., Choi, K., & Park, M. W. (2021). Performance comparison of
emerging evc and vvc video coding standards with hevc and av1. SMPTE Motion
Imaging Journal, 130 (4), 1–12. https://doi.org/10.5594/M001916
Hayase,
K., Fujii, H., Bandoh, Y., & Jozawa, H. (2012). Recent advances on scalable
video coding. IEICE Transactions on Fundamentals, E95.A(8), 1230–1239. https://doi.org/10.1587/transfun.E95.A.1230
Huang, Y. W., An, J., Huang, H., Li, X., Hsiang, S. T.,
Zhang, K., Gao, H., Ma, J., & Chubach, O. (2021). Block partitioning structure in the vvc standard. IEEE
Transactions on Circuits and Systems for Video Technology, 31 (10), 3818–3833. https://doi.org/10.1109/TCSVT.2021.3088134
ITE
and ARIB. (2016). Ultra-high definition/wide-color-gamut standard test
sequences – series a manual (tech. rep.). The Institute of Image Information,
Television Engineers (ITE), Association of Radio Industries, and Businesses
(ARIB).
ITE
and ARIB. (2017). Ultra-high definition/wide-color-gamut standard test
sequences – series b manual (tech. rep.). The Institute of Image Information,
Television Engineers (ITE), Association of Radio Industries, and Businesses
(ARIB).
Jhang-Li,
J. H., & Liou, J. H. (2023). An analysis of operating strategy for a video
live streaming platform: Advertisement, advertorial, and donation. Information
Technology & Management, 1–18. https://doi.org/10.1007/s10799-023-00387-x
Marketing
Scoop. (2023). The latest online video consumption statistics in 2024: An
in-depth analysis [Accessed 4 July 2025]. https://www.marketingscoop.com/small-business/online-video-consumption-statistics
Marquant,
G., Salmon-Legagneur, C., Urban, F., & de Lagrange, P. (2022). Spatial
scalability with vvc: Coding performance and complexity. Proceedings of SPIE. https://doi.org/10.1117/12.2632821
Mercat, A., Makinen, A., Sainio, J., Lemmetti, A.,
Viitanen, M., & Vanne, J. (2021). Comparative
rate-distortion-complexity analysis of vvc and hevc video codecs. IEEE Access,
9, 67813–67828. https://doi.org/10.1109/ACCESS.2021.3077116
Ohm,
J. R. (2005). Advances in scalable video coding. Proceedings of the IEEE, 93
(1), 42–56. https://doi.org/10.1109/JPROC.2004.839611
Pakdaman,
F., Adelimanesh, M. A., Gabbouj, M., & Hashemi, M. R. (2020). Complexity
analysis of next-generation vvc encoding and decoding. 2020 IEEE International
Conference on Image Processing (ICIP), 3134–3138. https://doi.org/10.1109/ICIP40778.2020.9190983
Peroni,
L., & Gorinsky, S. (2025). An end-to-end pipeline perspective on video
streaming in best-effort networks: A survey and tutorial. ACM Computing
Surveys, 57 (12), 1–47. https://doi.org/10.1145/3742472
Sandvine.
(2023). 2023 global internet phenomena report [Accessed 4 July 2025]. https://www.advanced-television.com/2023/01/19/report-23-jump-in-online-traffic-in-2023/
Schwarz, H., Marpe, D., & Wiegand, T. (2007). Overview of the scalable video coding extension of the h.264/avc
standard. IEEE Transactions on Circuits and Systems for Video Technology, 17
(9), 1103–1120. https://doi.org/10.1109/TCSVT.2007.905532
Shahid,
Z., Chaumont, M., & Puech, W. (2017). Scalable video coding [Accessed 4
July 2025]. https://web.archive.org/web/20170829172743/http://www.lirmm.fr/?chaumont/Publications/Shahid2017
ScalableVideoCoding.pdf
Sullivan,
G. J., Boyce, J. M., Chen, Y., Ohm, J. R., Segall, C. A., & Vetro, A.
(2013). Standardized extensions of high efficiency video coding. IEEE Journal
of Selected Topics in Signal Processing, 7 (6), 1001–1016. https://doi.org/10.1109/JSTSP.2013.2283657
Sullivan, G. J., Ohm, J. R., Han, W. J., & Wiegand,
T. (2012). Overview of
the high efficiency video coding (hevc) standard. IEEE Transactions on Circuits
and Systems for Video Technology, 22 (12), 1649–1668. https://doi.org/10.1109/TCSVT.2012.2221191
Sun,
H., Vetro, A., & Xin, J. (2007). An overview of scalable video streaming.
Wireless Communications and Mobile Computing, 7 (2), 159–172. https://doi.org/10.1002/wcm.471
Takahashi,
T., & Yamada, K. (2008). Information processing device and method, and program
(JP2008516556A) [Accessed 4 July 2025]. https://patents.google.com/patent/JP2008516556A/en
Timmerer,
C., Amirpour, H., Tashtarian, F., Afzal, S., Rizk, A., Zink, M., &
Hellwagner, H. (2025). Http adaptive streaming: A review on current advances
and future challenges. ACM Transactions on Multimedia Computing,
Communications, and Applications, 21 (7), 1–27. https://doi.org/10.1145/3736306
Tissier,
A., Mercat, A., Amestoy, T., Hamidouche, W., Vanne, J., & Menard, D.
(2019). Complexity reduction opportunities in the future vvc intra encoder.
2019 IEEE 21st International Workshop on Multimedia Signal Processing (MMSP),
1–6. https://doi.org/10.1109/MMSP.2019.8901754
Unanue,
I., Urteaga, I., Husemann, R., J, D., Roesler, V., Rodriguez, A., &
Sanchez, P. (2011). A tutorial on h.264/svc scalable video coding and its
tradeoff between quality, coding efficiency and performance. In Recent advances
on video coding. InTech. https://doi.org/10.5772/19227
Wang,
Z., Zhang, J., & Li, H. (2010). Spatially scalable video coding with an
efficient two-layered architecture. Multimedia Tools and Applications, 48,
247–265. https://doi.org/10.1007/s11042-009-0327-3
Wiegand, T., Sullivan, G. J., Bjontegaard, G., &
Luthra, A. (2003). Overview of
the h.264/avc video coding standard. IEEE Transactions on Circuits and Systems
for Video Technology, 13 (7), 560–576. https://doi.org/10.1109/TCSVT.2003.815165
Zhang,
T., & Mao, S. (2019). An overview of emerging video coding standards.
GetMobile: Mobile Computing and Communications, 22 (4), 13–20. https://doi.org/10.1145/3325867.3325873
Zheng,
J. (2025). Study on the future development of streaming media and traditional
media. Communications in Humanities Research, 58, 19–24. https://doi.org/10.54254/2753-7064/2025.22075