• International Journal of Technology (IJTech)
  • Vol 17, No 1 (2026)

Efficient Block Partitioning Method for Spatial Scalable Encoding in Versatile Video Coding

Efficient Block Partitioning Method for Spatial Scalable Encoding in Versatile Video Coding

Title: Efficient Block Partitioning Method for Spatial Scalable Encoding in Versatile Video Coding
Yo Koura, Naoya Niwa, Hiroe Iwasaki

Corresponding email:


Cite this article as:
Koura, Y., Niwa, N., & Iwasaki, H. (2026). Efficient block partitioning method for spatial scalable
encoding in versatile video coding. International Journal of Technology, 17 (1), 18–26


11
Downloads
Yo Koura Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo-to 184-8588 Japan
Naoya Niwa Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo-to 184-8588 Japan
Hiroe Iwasaki 1. Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo-to 184-8588 Japan 2. Tohoku University, 6-6 Aoba, Aramaki, Aoba-ku, Sendai-shi, Miyagi-ken 980-0845 Japan
Email to Corresponding Author

Abstract
Efficient Block Partitioning Method for Spatial Scalable Encoding in Versatile Video Coding

The rapid increase in video consumption, further accelerated by the coronavirus disease 2019 (COVID-19) pandemic, has driven a significant rise in demand for live streaming services and video delivery across various devices, such as smartphones and tablets. Screen size and display resolution of these devices vary widely, creating the need for flexible and efficient video transmission methods. Spatial scalable coding addresses this challenge by encoding multiple resolutions within a single bitstream, allowing devices to decode the appropriate resolution without requiring separate streams. This approach reduces redundancy and improves transmission efficiency. Versatile Video Coding (VVC), the latest international video compression standard, supports spatial scalability through its multilayer profile. VVC enhances compression performance by reusing information from lower-resolution layers; however, this added complexity increases computational overhead, particularly during encoding. In this paper, we propose an efficient block partitioning method specifically designed for scalable VVC-based coding. The method exploits structural similarities between low-resolution and high-resolution encoded data to guide partitioning decisions in the high-resolution layer, thereby reducing unnecessary computations. The experimental results demonstrate that the proposed method reduces encoding time by approximately 55%, with a BD-rate increase below 3.45%. These results validate the effectiveness of the approach in accelerating scalable video encoding without compromising visual quality, making it suitable for real-time applications and environments with limited computational resources.

Block partitioning algorithm; Spatial scalable coding; Versatile Video Coding (VVC); Video coding

Supplementary Material
FilenameDescription
EECE-8218-20251110154015.docx ---
References

Amestoy, T., Sidaty, N., Hamidouche, W., Philippe, P., & Menard, D. (2023). Video quality assessment and coding complexity of the versatile video coding standard. arXiv preprint.

Bjontegaard, G. (2001). Calculation of average psnr differences between rd-curves (tech. rep. No. VCEG-M33). ITU-T. https://www.itu.int/md/T01-SG16-010402-TD-0033

Bonnineau, C., Hamidouche, W., Fournier, J., Sidaty, N., Travers, J. F., & Deforges, O. (2022). Perceptual quality assessment of hevc and vvc standards for 8k video. IEEE Transactions on Broadcasting, 68 (1), 246–253. https://doi.org/10.1109/TBC.2022.3140710

Boyce, J. M., Ye, Y., Chen, J., & Ramasubramonian, A. K. (2015). Overview of shvc: Scalable extensions of the high efficiency video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, 26 (1), 20–34. https://doi.org/10.1109/TCSVT.2015.2461951

Bross, B., Chen, J., Ohm, J. R., Sullivan, G. J., & Wang, Y. K. (2021a). Developments in international video coding standardization after avc, with an overview of versatile video coding (vvc). Proceedings of the IEEE, 109 (9), 1463–1493. https://doi.org/10.1109/JPROC.2020.3043399

Bross, B., Chen, J., Ohm, J. R., Sullivan, G. J., & Wang, Y. K. (2021b). Overview of the versatile video coding (vvc) standard and its applications. IEEE Transactions on Circuits and Systems for Video Technology, 31 (10), 3736–3764. https://doi.org/10.1109/TCSVT.2021.3101953

Business Research Insights. (2024). Live streaming market size, share, and growth report 2024–2033 [Accessed 4 July 2025]. https://www.businessresearchinsights.com/market-reports/live-streaming-market-111696

Cong, Z., Liu, J., & Manchanda, P. (2021). The role of “live” in livestreaming markets: Evidence using orthogonal random forest. arXiv.

Feldmann, A., Gasser, O., Lichtblau, F., Pujol, E., Poese, I., Dietzel, C., Wagner, D., Wichtl-huber, M., Tapiador, J., Vallina-Rodriguez, N., Hohlfeld, O., & Smaragdakis, G. (2020). The lockdown effect: Implications of the covid-19 pandemic on internet traffic. Proceedings of the ACM Internet Measurement Conference (IMC ’20), 1–18. https://doi.org/10.1145/3419394.3423658

Fischer, W. (2020). Video coding (mpeg-2, mpeg-4/avc, hevc). In Digital video and audio broadcasting technology (pp. 125–175). Springer. https://doi.org/10.1007/978-3-030-32185-7_7

Fraunhofer Heinrich-Hertz-Institut. (2014). Hevc scalability extension (shvc) [Accessed 4 July 2025]. https://hevc.hhi.fraunhofer.de/shvc

Grois, D., Giladi, A., Choi, K., & Park, M. W. (2021). Performance comparison of emerging evc and vvc video coding standards with hevc and av1. SMPTE Motion Imaging Journal, 130 (4), 1–12. https://doi.org/10.5594/M001916

Hayase, K., Fujii, H., Bandoh, Y., & Jozawa, H. (2012). Recent advances on scalable video coding. IEICE Transactions on Fundamentals, E95.A(8), 1230–1239. https://doi.org/10.1587/transfun.E95.A.1230

Huang, Y. W., An, J., Huang, H., Li, X., Hsiang, S. T., Zhang, K., Gao, H., Ma, J., & Chubach, O. (2021). Block partitioning structure in the vvc standard. IEEE Transactions on Circuits and Systems for Video Technology, 31 (10), 3818–3833. https://doi.org/10.1109/TCSVT.2021.3088134

ITE and ARIB. (2016). Ultra-high definition/wide-color-gamut standard test sequences – series a manual (tech. rep.). The Institute of Image Information, Television Engineers (ITE), Association of Radio Industries, and Businesses (ARIB).

ITE and ARIB. (2017). Ultra-high definition/wide-color-gamut standard test sequences – series b manual (tech. rep.). The Institute of Image Information, Television Engineers (ITE), Association of Radio Industries, and Businesses (ARIB).

Jhang-Li, J. H., & Liou, J. H. (2023). An analysis of operating strategy for a video live streaming platform: Advertisement, advertorial, and donation. Information Technology & Management, 1–18. https://doi.org/10.1007/s10799-023-00387-x

Marketing Scoop. (2023). The latest online video consumption statistics in 2024: An in-depth analysis [Accessed 4 July 2025]. https://www.marketingscoop.com/small-business/online-video-consumption-statistics

Marquant, G., Salmon-Legagneur, C., Urban, F., & de Lagrange, P. (2022). Spatial scalability with vvc: Coding performance and complexity. Proceedings of SPIE. https://doi.org/10.1117/12.2632821

Mercat, A., Makinen, A., Sainio, J., Lemmetti, A., Viitanen, M., & Vanne, J. (2021). Comparative rate-distortion-complexity analysis of vvc and hevc video codecs. IEEE Access, 9, 67813–67828. https://doi.org/10.1109/ACCESS.2021.3077116

Ohm, J. R. (2005). Advances in scalable video coding. Proceedings of the IEEE, 93 (1), 42–56. https://doi.org/10.1109/JPROC.2004.839611

Pakdaman, F., Adelimanesh, M. A., Gabbouj, M., & Hashemi, M. R. (2020). Complexity analysis of next-generation vvc encoding and decoding. 2020 IEEE International Conference on Image Processing (ICIP), 3134–3138. https://doi.org/10.1109/ICIP40778.2020.9190983

Peroni, L., & Gorinsky, S. (2025). An end-to-end pipeline perspective on video streaming in best-effort networks: A survey and tutorial. ACM Computing Surveys, 57 (12), 1–47. https://doi.org/10.1145/3742472

Sandvine. (2023). 2023 global internet phenomena report [Accessed 4 July 2025]. https://www.advanced-television.com/2023/01/19/report-23-jump-in-online-traffic-in-2023/

Schwarz, H., Marpe, D., & Wiegand, T. (2007). Overview of the scalable video coding extension of the h.264/avc standard. IEEE Transactions on Circuits and Systems for Video Technology, 17 (9), 1103–1120. https://doi.org/10.1109/TCSVT.2007.905532

Shahid, Z., Chaumont, M., & Puech, W. (2017). Scalable video coding [Accessed 4 July 2025]. https://web.archive.org/web/20170829172743/http://www.lirmm.fr/?chaumont/Publications/Shahid2017 ScalableVideoCoding.pdf

Sullivan, G. J., Boyce, J. M., Chen, Y., Ohm, J. R., Segall, C. A., & Vetro, A. (2013). Standardized extensions of high efficiency video coding. IEEE Journal of Selected Topics in Signal Processing, 7 (6), 1001–1016. https://doi.org/10.1109/JSTSP.2013.2283657

Sullivan, G. J., Ohm, J. R., Han, W. J., & Wiegand, T. (2012). Overview of the high efficiency video coding (hevc) standard. IEEE Transactions on Circuits and Systems for Video Technology, 22 (12), 1649–1668. https://doi.org/10.1109/TCSVT.2012.2221191

Sun, H., Vetro, A., & Xin, J. (2007). An overview of scalable video streaming. Wireless Communications and Mobile Computing, 7 (2), 159–172. https://doi.org/10.1002/wcm.471

Takahashi, T., & Yamada, K. (2008). Information processing device and method, and program (JP2008516556A) [Accessed 4 July 2025]. https://patents.google.com/patent/JP2008516556A/en

Timmerer, C., Amirpour, H., Tashtarian, F., Afzal, S., Rizk, A., Zink, M., & Hellwagner, H. (2025). Http adaptive streaming: A review on current advances and future challenges. ACM Transactions on Multimedia Computing, Communications, and Applications, 21 (7), 1–27. https://doi.org/10.1145/3736306

Tissier, A., Mercat, A., Amestoy, T., Hamidouche, W., Vanne, J., & Menard, D. (2019). Complexity reduction opportunities in the future vvc intra encoder. 2019 IEEE 21st International Workshop on Multimedia Signal Processing (MMSP), 1–6. https://doi.org/10.1109/MMSP.2019.8901754

Unanue, I., Urteaga, I., Husemann, R., J, D., Roesler, V., Rodriguez, A., & Sanchez, P. (2011). A tutorial on h.264/svc scalable video coding and its tradeoff between quality, coding efficiency and performance. In Recent advances on video coding. InTech. https://doi.org/10.5772/19227

Wang, Z., Zhang, J., & Li, H. (2010). Spatially scalable video coding with an efficient two-layered architecture. Multimedia Tools and Applications, 48, 247–265. https://doi.org/10.1007/s11042-009-0327-3

Wiegand, T., Sullivan, G. J., Bjontegaard, G., & Luthra, A. (2003). Overview of the h.264/avc video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, 13 (7), 560–576. https://doi.org/10.1109/TCSVT.2003.815165

Zhang, T., & Mao, S. (2019). An overview of emerging video coding standards. GetMobile: Mobile Computing and Communications, 22 (4), 13–20. https://doi.org/10.1145/3325867.3325873

Zheng, J. (2025). Study on the future development of streaming media and traditional media. Communications in Humanities Research, 58, 19–24. https://doi.org/10.54254/2753-7064/2025.22075