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Abstract: The rapid increase in video consumption, further accelerated by the coronavirus
disease 2019 (COVID-19) pandemic, has driven a significant rise in demand for live streaming
services and video delivery across various devices, such as smartphones and tablets. Screen size
and display resolution of these devices vary widely, creating the need for flexible and efficient
video transmission methods. Spatial scalable coding addresses this challenge by encoding mul-
tiple resolutions within a single bitstream, allowing devices to decode the appropriate resolution
without requiring separate streams. This approach reduces redundancy and improves trans-
mission efficiency. Versatile Video Coding (VVC), the latest international video compression
standard, supports spatial scalability through its multilayer profile. VVC enhances compression
performance by reusing information from lower-resolution layers; however, this added complex-
ity increases computational overhead, particularly during encoding. In this paper, we propose
an efficient block partitioning method specifically designed for scalable VVC-based coding. The
method exploits structural similarities between low-resolution and high-resolution encoded data
to guide partitioning decisions in the high-resolution layer, thereby reducing unnecessary com-
putations. The experimental results demonstrate that the proposed method reduces encoding
time by approximately 55%, with a BD-rate increase below 3.45%. These results validate the ef-
fectiveness of the approach in accelerating scalable video encoding without compromising visual
quality, making it suitable for real-time applications and environments with limited computa-
tional resources.

Keywords: Block partitioning algorithm; Spatial scalable coding; Versatile Video Coding
(VVC); Video coding

1. Introduction

Since the COVID-19 pandemic, there has been a continuous increase in overall network
traffic due to the growing consumption of video content (Peroni and Gorinsky, 2025; Timmerer
et al., 2025; Business Research Insights, 2024; Jhang-Li and Liou, 2023; Sandvine, 2023; Feld-
mann et al., 2020). The demand for live streaming has grown rapidly due to the increase in
online events, remote communication, and real-time broadcasting services among various types
of video services (Cong et al., 2021). Simultaneously, more users are watching videos on portable
devices such as smartphones and tablets (Zheng, 2025; Marketing Scoop, 2023). Multiple bit-
streams are often required to support various screen sizes and resolutions, which increases overall
transmission bandwidth requirements.

Spatial scalable coding enables efficient multi-resolution video encoding using a layered
bitstream with multiple resolutions (Sun et al., 2007). It is supported as a standard feature
in the multilayer profile of Versatile Video Coding (VVC), the latest international video coding
standard that began with MPEG-2, followed by Advanced Video Coding (AVC/H.264) and High
Efficiency Video Coding (HEVC/H.265) (Bross et al., 2021b; Bross et al., 2021a; Fischer, 2020;
Zhang and Mao, 2019; Sullivan et al., 2012; Wiegand et al., 2003). More block shapes are adopted
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in VVC than in previous standardization specifications, and determining the appropriate block
shape consumes computational resources. Furthermore, the increased computational complexity
of the basic encoding process significantly increases the search complexity between videos at
different resolutions.

We propose a new method for accelerating spatial scalable coding using similarities in
the block partitioning structure between videos at different resolutions. The proposed method
achieves an average reduction of 55% in encoding time, with a maximum BD-rate increase of less
than 3.45%, which is generally acceptable in terms of perceived visual quality. The remainder
of this paper is organized as follows. Section 2 provides an overview of spatial scalable coding in
the VVC framework. Section 3 presents the details of the proposed method. Section 4 presents
the experimental results and discussion. Finally, Section 5 concludes the paper.

2. VVC-Based Spatial Scalable Coding

2.1 Overview of the VVC

Versatile Video Coding (VVC) is the most recent video compression standard in the lineage
of international standards. Developed to meet the growing demand for high-resolution and
diverse video content, VVC supports a wide range of video formats, including 4K and 8K ultra-
high-definition video, high dynamic range (HDR), and 360° immersive video. To accommodate
such formats, VVC introduces a highly flexible and efficient coding framework equipped with
numerous new tools and advanced features and achieves approximately 40%–50% reduction in
bit rate compared to HEVC (Amestoy et al., 2023; Bonnineau et al., 2022; Grois et al., 2021).
However, this improvement in compression efficiency comes at the cost of significantly increasing
the encoding time.

Among the many factors that contribute to this complexity, block partitioning is particularly
critical. Block partitioning refers to the process of dividing a frame into CUs of various sizes
and shapes. Each CU is a fundamental unit for prediction, transformation, and quantization,
as shown in Figure 1. As illustrated in Figure 2, VVC extends the block partitioning structure
of HEVC by adding BT and TT splits to the conventional QT structure (Huang et al., 2021).
However, the increased number of partitioning possibilities significantly increases computational
complexity (Mercat et al., 2021; Pakdaman et al., 2020). Block partitioning consumes more
than 90% of the total VVC encoding time (Tissier et al., 2019).

Figure 1 Overview of the VVC coding process

Figure 2 The block partition patterns specified in VVC



International Journal of Technology 17(1) 18-26 (2026) 20

2.2 Spatial scalable coding

As shown in Figure 3, spatial scalable coding enables the efficient transfer of videos at
different resolutions within a single coding framework (Shahid et al., 2017; Unanue et al., 2011;
Schwarz et al., 2007). This technique has evolved through earlier scalable extensions such as
SVC for H.264/AVC and SHVC for H.265/HEVC (Boyce et al., 2015; Fraunhofer Heinrich-
Hertz-Institut, 2014; Sullivan et al., 2013; Hayase et al., 2012; Ohm, 2005). VVC provides
spatial scalability by hierarchically encoding multiple layers—namely, a base layer (BL) and an
enhancement layer (EL). The standard VVC encoding tool is used to encode the BL, and its
decoded frames are used as prediction references in the EL. The residual between the up-sampled
BL frame and the original high-resolution input is calculated. In addition, the EL supports the
reuse of coding information from the BL, such as motion vectors. This reduces redundancy and
improves compression efficiency.

With this layered structure, decoding only the BL provides a low-resolution version, whereas
decoding both BL and EL reconstructs the high-resolution video. Compared with encoding each
resolution independently, spatial scalable coding achieves bitrate savings by avoiding duplicate
encoding.

However, this approach increases the complexity of encoding (Marquant et al., 2022; Wang
et al., 2010; Takahashi and Yamada, 2008). In single-layer coding, prediction is solely based on
spatially or temporally adjacent blocks. In contrast, spatial scalable coding must also evaluate
the effectiveness of reusing information from the base layer, which introduces additional compu-
tational overhead. Figure 4 illustrates the extra processing steps required in the scalable coding
process.

Figure 3 Structure of prediction in spatial scalable coding

Figure 4 Additional processing for inter-layer prediction in spatial scalable coding
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3. Proposed Method

3.1 Overview of the proposed approach

In spatial scalable coding, BL and EL represent the same visual content at different res-
olutions. Because of this similarity, the block partitioning in the BL is often similar to that
required in the EL. By referencing the corresponding region in the BL, the proposed method
accelerates block partitioning in the EL. Specifically, it uses the block boundaries and shapes
in the BL to reduce the number of partitioning candidates in the EL. This approach effectively
reduces computational complexity.

3.2 Block Partitioning Algorithm for the Enhancement Layer Based on the Base
Layer

The proposed algorithm efficiently performs block partitioning in the enhancement layer
by utilizing both boundary and area information from the base layer. The algorithm’s overall
structure is detailed in the following subsections.

3.2.1 Overall Algorithm Flow

A flowchart of the proposed algorithm is shown in Figure 5. The algorithm first checks
whether the current CU’s width or height is 32 pixels or more. If this condition is satisfied, the
candidate partitioning patterns are refined using the block boundary information from the base
layer. If the condition is not met or boundary-based refinement is not applicable, the algorithm
uses the CU shapes in the corresponding region of the base layer for refinement.

3.2.2 Block Partitioning Decision Based on Base Layer Boundaries

The proposed method determines the direction of partitioning in the EL by referencing
block boundaries from the BL. Specifically, it detects straight split lines within the corresponding
region of the BL, either vertical (dividing the region into left and right) or horizontal (dividing
the region into top and bottom), as illustrated in Figure 6.

In the VVC Test Model (VTM), coding units are recursively partitioned, and the boundary
line that divides a region into two parts typically corresponds to the initial split applied. The
proposed method selects the longest vertical or horizontal split line within the corresponding
BL region and uses it to restrict the candidate partitioning directions in the EL. This approach
eliminates unnecessary block partitioning pattern evaluation and reduces computational com-
plexity. If neither vertical nor horizontal split lines are detected, the region is considered to have
a flat texture. In such cases, no further partitioning is performed in the EL.

3.2.3 Block Partitioning Decision Based on the Base Layer Area

The partitioning direction in the EL is determined based on the total area of vertical and
horizontal CUs in the corresponding BL region. In the corresponding BL region, the total area
of vertically oriented CUs (Sv) and horizontally oriented CUs (SH) is calculated. Since larger
CUs have a greater influence on the overall structure, using area as a metric allows for a more
reliable estimation of the dominant partitioning trend. By comparing SV and SH, the method
selects the more appropriate split direction. As a result, the algorithm can effectively reduce the
number of partitioning patterns of candidates, even in regions with weak directional boundaries
or small block sizes.

4. Results and Discussion

The proposed method is evaluated by comparing it with the VTM’s spatial scalable coding
functionality.
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Figure 5 The flowchart of the proposed block partition methods

Figure 6 The example of Vertical Split Line and Horizontal Split Line

4.1 Evaluation environment

The experiments were performed using VTM-23.6 reference software on a PC equipped
with an AMD Ryzen 9 5950X processor. Encoding was conducted under the random access
configuration with quantization parameters (QPs) of 22, 27, 32, and 37. The first 33 frames
of several test sequences with different characteristics were used in the experiments(ITE and
ARIB, 2017; ITE and ARIB, 2016). The video resolution was set to 2 K (1920×1080) for the
BL and 4K (3840×2160) for the EL.

4.2 Measurement Criteria

In this experiment, the evaluation is based on coding efficiency and the rate of reduction of
encoding time in EL.The Bjøntegaard Delta (BD)-rate, which represents the average increase in
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bitrate at the same quality, is used as an indicator of coding efficiency (Bjontegaard, 2001). The
BD-rate in this experiment was calculated from the Y-PSNR in EL and the sum of the bitrates
of BL and EL.

The encoding time reduction rate in EL, TSEL is calculated as follows:

TSEL = Timedefault − Timeproposed
Timedefault − TimeBL

(1)

where Timeproposed is the coding time when using the proposed method, Timedefault is the
encoding time when using the spatial scalable encoding of the original setting, and TimeBL is the
coding time of BL. This formula derives the coding time reduction rate for EL only, independent
of the coding time of BL.

4.3 Experimental results

TSEL and BD-rate are shown in Table 1. TSEL is the average of the results in the four
QPs (22, 27, 32, and 37). It can be seen from Figure 6 that the proposed method achieves an
average speed-up of approximately 55% and a minimum of 40%. Table 2 also shows that the BD
rate is at most 3.45%, and in particular, paddock, water polo (scrolling text), drama (apple),
and drama (bouquet) have a BD rate of less than 3%, which is a slight degradation.

Table 1 Time Saving and BD-rate in Enhancement Layer
Sequence Time Saving in Enhancement Layer (%) BD-rate (%)

Japanese Maple 66.64 3.45
Layered Kimono 52.07 1.24
Horse race (dirt) 41.31 3.25

Horse race (finish) 62.57 3.07
Paddock 53.17 1.69

Marathon (start) 52.65 3.34
Water polo (scrolling text) 55.96 2.32

Drama (apple) 52.35 2.67
Drama (bouquet) 57.79 2.66

The proposed method achieved approximately a 55% reduction in encoding time across all
test sequences. For sequences such as Paddock, Water polo (scrolling text), Drama (apple), and
Drama (bouquet), the increase in BD-rate remained below 3%, and no significant issues were
observed during subjective visual verification. In contrast, sequences including Japanese maple,
horse race (dirt), horse race (finish), and marathon (start) showed increases in the BD rate ex-
ceeding 3%. For instance, Japanese maple contains numerous thin branches and highly detailed
leaf structures, which generate fine, high-frequency patterns that normally require detailed block
partitioning. Similarly, the horse race (dirt) sequence features irregular granular textures of the
dirt field, resulting in rapidly changing local variations that demand flexible and fine-grained
splits. Because the proposed method restricts the candidate partitions based on BL-derived
information, these sequences suffer from reduced ability to adaptively refine the partition struc-
ture, resulting in greater coding efficiency degradation. As a result, the proposed method shows
a slight degradation in the BD rate, but it remains effective owing to the significant time saving
contribution.

5. Conclusions

In this study, a speed-up method for spatial scalable coding in VVC is proposed, utilizing
the block boundary and shape information of the BL. The experimental results show that the
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proposed method can achieve an average speed-up of approximately 55%, and the coding effi-
ciency reduction is reduced to a maximum of 3.45%. This study shows the feasibility of a more
efficient live video streaming method. In the future, we would like to develop even more efficient
speed-up methods that consider texture fineness and motion information.
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