A Unified Long-Haul Optical Fiber Architecture for Simultaneous High-Speed Communication and Fiber Bragg Grating-Based Sensing
Published at : 01 Dec 2025
Volume : IJtech
Vol 16, No 6 (2025)
DOI : https://doi.org/10.14716/ijtech.v16i6.7931
| Mustika Fitriana Dewi | Research Organization for Energy and Manufacturing, National Research and Innovation Agency, Kawasan PUSPIPTEK, Building 720, Serpong, South Tangerang, 15314, Banten, Indonesia |
| Muhammad Yusha Firdaus | Research Organization for Energy and Manufacturing, National Research and Innovation Agency, Kawasan PUSPIPTEK, Building 720, Serpong, South Tangerang, 15314, Banten, Indonesia |
| Maratul Hamidah | Research Organization for Energy and Manufacturing, National Research and Innovation Agency, Kawasan PUSPIPTEK, Building 720, Serpong, South Tangerang, 15314, Banten, Indonesia |
| Rahmayati Alindra | Research Organization for Energy and Manufacturing, National Research and Innovation Agency, Kawasan PUSPIPTEK, Building 720, Serpong, South Tangerang, 15314, Banten, Indonesia |
| Amalia Irma Nurwidya | Research Organization for Energy and Manufacturing, National Research and Innovation Agency, Kawasan PUSPIPTEK, Building 720, Serpong, South Tangerang, 15314, Banten, Indonesia |
| Tinova Pramudya | Research Organization for Energy and Manufacturing, National Research and Innovation Agency, Kawasan PUSPIPTEK, Building 720, Serpong, South Tangerang, 15314, Banten, Indonesia |
| Muhamad Asvial | Department of Electrical Engineering, Universitas Indonesia, Kampus Baru UI, Depok 16424, Indonesia |
| Agus Muhamad Hatta | Department of Engineering Physics, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111, Indonesia |
| Sasono Rahardjo | Research Organization for Energy and Manufacturing, National Research and Innovation Agency, Kawasan PUSPIPTEK, Building 720, Serpong, South Tangerang, 15314, Banten, Indonesia |
The integration of long-haul high-speed optical communication and distributed sensing within a single optical fiber represents a crucial step toward more efficient and scalable infrastructure for real-time environmental observation and data delivery. This study examines the performance of a 120 km single-mode optical link operating at 10 Gbps, embedded with three fiber Bragg grating (FBG) sensors positioned at 30 km intervals, enabling dual functionality over a shared single strand of physical medium. A broadband amplified spontaneous emission (ASE) source is employed to simultaneously provide the 1550 nm data channel and interrogation wavelengths at 1554, 1556, and 1558 nm for the FBG sensors. System performance is assessed using standard optical communication metrics, i.e., Q-factor, bit error rate (BER), and eye diagram analysis, while sensor reliability is evaluated through reflected signal levels and wavelength shifts captured at the receiver. The results demonstrate that sensor integration introduces no significant degradation in the transmission quality. The proposed system maintained robust performance, achieving a Q-factor of 6.38 and a BER of 6.23 × 10-11 under post compensation configuration of the dispersion compensating fiber (DCF). All FBG reflection signals remain clearly distinguishable and maintain effective responsiveness to temperature variations, confirming the feasibility of concurrent distributed sensing. By unifying sensing and high-speed communication in a long-haul link, this work thereby minimizing component count, cost, and complexity, establishing a practical foundation for next-generation scientific monitoring and reliable telecommunications (SMART) infrastructure.
Fiber bragg grating; Dual-function optical fiber system; Distributed sensing; Long- haul communication; Scientific monitoring and reliable telecommunication infrastructure
| Filename | Description |
|---|---|
| R2-EECE-7931-20250925153041.png | Figure 1 |
| R2-EECE-7931-20250925153207.png | Figure 2 |
| R2-EECE-7931-20250925153236.png | Figure 3a |
| R2-EECE-7931-20250925153257.png | Figure 3b |
| R2-EECE-7931-20250925153458.jpg | Figure 4 |
| R2-EECE-7931-20250925153531.jpg | Figure 5a |
| R2-EECE-7931-20250925153545.jpg | Figure 5b |
| R2-EECE-7931-20250925153613.jpg | Figure 6 |
| R2-EECE-7931-20250925153640.png | Figure 7 |
| R2-EECE-7931-20250925153717.png | Figure 8 |
Ali, R. S., Fattah, A. Y., &
Hassib, M. D. (2022). The effects of optical fiber impairments on communication
systems. Indonesian Journal of Electrical Engineering and Computer Science,
28(1), 241–253. https://doi.org/10.11591/ijeecs.v28.i1.pp241-253
Amiri, I., Rashed, A. N. Z., Mohamed,
A. E. A., Aboelazm, M. B., & Yupapin, P. (2023). Nonlinear effects with
semiconductor optical amplifiers. Journal of Optical Communications, 44(1),
11–17. https://doi.org/10.1515/joc-2019-0053
Asvial, M., & Paramitha, M. P.
(2015). Analysis of high order dispersion and nonlinear effects in fiber optic
transmission with Non Linear Schrödinger Equation model. 2015 International
Conference on Quality in Research (QiR), 145–150. https://doi.org/10.1109/QiR.2015.7374915
Braunfelds, J., Spolitis, S., Porins,
J., & Bobrovs, V. (2021). Fiber Bragg grating sensors integration in fiber
optical systems. In Application of Optical Fiber in Engineering. IntechOpen. https://doi.org/10.5772/intechopen.94289
Chen, Y., Mark, B. L., Burnham, R., & Verdun, H. (2009). Reducing
ASE effect in coherent detection by employing double-pass fiber preamplifier
and time-domain filter. IEEE Journal of Quantum Electronics, 45(10),
1289–1296. https://doi.org/10.1109/JQE.2009.2024773
de la Torre, O., Floris, I., Sales, S.,
& Escaler, X. (2021). Fiber Bragg grating sensors for underwater vibration
measurement: Potential hydropower applications. Sensors, 21(13), 4272. https://doi.org/10.3390/s21134272
Dehnaw, A. M., Manie, Y. C., Du, L.-Y., Yao, C.-K., Jiang, J.-W., Liu,
B.-X., & Peng, P.-C. (2023). Integrated sensor-optics communication
system using bidirectional fiber and FSO channels and hybrid deep learning
techniques. Sensors, 23(20), 8434. https://doi.org/10.3390/s23208434
Elsherif, M., Salih, A. E., Muñoz, M.
G., Alam, F., AlQattan, B., Antonysamy, D. S., Zaki, M. F., Yetisen, A. K.,
Park, S., Wilkinson, T. D., & Butt, H. (2022). Optical fiber sensors:
Working principle, applications, and limitations. Advanced Photonics
Research, 3(11). https://doi.org/10.1002/adpr.202100371
Firdaus, M. Y., Wibowo, D. K., Hamidah,
M., Utama, R. P., Dewi, M. F., Hamdani, M., Setianingrum, L., Rahardjo, S.,
Purwoadi, M. A., & Purnomo, E. (2022). The effect of Fiber Bragg Grating
(FBG) sensors on data channel of fiber optic communication (FOC) system. Proceedings
of the 2022 International Conference on Computer, Control, Informatics and Its
Applications, 40–43. https://doi.org/10.1145/3575882.3575890
Hayle, S. T., Manie, Y. C., Yao, C.-K.,
Yeh, T.-Y., Yu, C.-H., & Peng, P.-C. (2022). Hybrid of free space optics
communication and sensor system using IWDM technique. Journal of Lightwave
Technology, 40(17), 5862–5869. https://doi.org/10.1109/JLT.2022.3186895
Howe, B. M., Angove, M., Aucan, J.,
Barnes, C. R., Barros, J. S., Bayliff, N., Becker, N. C., Carrilho, F., Fouch,
M. J., Fry, B., Jamelot, A., Janiszewski, H., Kong, L. S. L., Lentz, S.,
Luther, D. S., Marinaro, G., Matias, L. M., Rowe, C. A., Sakya, A. E., …
Wilcock, W. (2022). SMART subsea cables for observing the Earth and ocean,
mitigating environmental hazards, and supporting the blue economy. Frontiers
in Earth Science, 9. https://doi.org/10.3389/feart.2021.775544
Howe, B. M., Arbic, B. K., Aucan, J.,
Barnes, C. R., Bayliff, N., Becker, N., Butler, R., Doyle, L., Elipot, S.,
Johnson, G. C., Landerer, F., Lentz, S., Luther, D. S., Müller, M., Mariano,
J., Panayotou, K., Rowe, C., Ota, H., Song, Y. T., … Weinstein, S. (2019).
SMART cables for observing the global ocean: Science and implementation. Frontiers
in Marine Science, 6. https://doi.org/10.3389/fmars.2019.00424
Hu, B., Jing, W., Wei, W., & Zhao, R.-m. (2010). Analysis on
dispersion compensation with DCF based on Optisystem. 2010 2nd International
Conference on Industrial and Information Systems, 40–43. https://doi.org/10.1109/INDUSIS.2010.5565685
Hugar, N. R., P, P., Maleeha, & V,
D. (2024). Simulation and analysis of bit error rate in optical fiber
communication using Optisystem. 2024 7th International Conference on
Devices, Circuits and Systems (ICDCS), 67–71. https://doi.org/10.1109/ICDCS59278.2024.10560832
International Telecommunication Union.
(2004). Forward error correction for high bit-rate DWDM submarine systems
(Recommendation G.975.1).
Jyotsana, K., Kaur, R., & Singh, R. (2014). Performance
comparison of pre-, post-, and symmetrical-dispersion compensation techniques
using DCF on 40 Gbps OTDM system for different fibre standards. Optik, 125(9),
2134–2136. https://doi.org/10.1016/j.ijleo.2013.10.059
Madani, N. A., Purnamaningsih, R. W.,
Poespawati, N. R., Hamidah, M., Rahardjo, S., & Wibowo, D. K. (2023).
Detection of low hydrostatic pressure using Fiber Bragg Grating sensor. International
Journal of Technology, 14(7), 1527. https://doi.org/10.14716/ijtech.v14i7.6714
Marra, G., Fairweather, D. M., Kamalov,
V., Gaynor, P., Cantono, M., Mulholland, S., Baptie, B., Castellanos, J. C.,
Vagenas, G., Gaudron, J.-O., Kronjäger, J., Hill, I. R., Schioppo, M., Barbeito
Edreira, I., Burrows, K. A., Clivati, C., Calonico, D., & Curtis, A.
(2022). Optical interferometry–based array of seafloor environmental sensors
using a transoceanic submarine cable. Science, 376(6595), 874–879. https://doi.org/10.1126/science.abo1939
Meena, M. L., & Kumar-Gupta, R.
(2019). Design and comparative performance evaluation of chirped FBG dispersion
compensation with DCF technique for DWDM optical transmission systems. Optik, 188, 212–224. https://doi.org/10.1016/j.ijleo.2019.05.056
Min, R., Liu, Z., Pereira, L., Yang, C., Sui, Q., & Marques, C. (2021).
Optical fiber sensing for marine environment and marine structural
health monitoring: A review. Optics & Laser Technology, 140, 107082.
https://doi.org/10.1016/j.optlastec.2021.107082
Muhammad, F., Ali, F., Habib, U.,
Usman, M., Khan, I., & Kim, S. (2020). Time domain equalization and digital
back-propagation method-based receiver for fiber optic communication systems. International
Journal of Optics, 2020, 1–13. https://doi.org/10.1155/2020/3146374
Neheeda, P., Pradeep, M., & Shaija,
P. J. (2016). Analysis of WDM system with dispersion compensation schemes. Procedia
Computer Science, 93, 647–654. https://doi.org/10.1016/j.procs.2016.07.254
Nor, M. S. M., Khan, A. A., Mohamad,
S., & Thirunavakkarasu, P. (2023). Development of optical fiber sensor for
water salinity detection. International Journal of Technology, 14(6),
1247. https://doi.org/10.14716/ijtech.v14i6.6650
Odeh, A. (2023). Comparing dispersion
compensation methods for 120 Gb/s optical transmission: Pre, post, and
symmetrical schemes. The Journal of Engineering Research, 19(2),
163–179. https://doi.org/10.53540/tjer.vol19iss2pp163-179
Patnaik, B., & Sahu, P. K. (2013).
Optimized ultra-high bit rate hybrid optical communication system design and
simulation. Optik, 124(2), 170–176. https://doi.org/10.1016/j.ijleo.2011.11.080
Pendão, C., & Silva, I. (2022). Optical fiber sensors and
sensing networks: Overview of the main principles and applications. Sensors,
22(19), 7554. https://doi.org/10.3390/s22197554
Priambodo, P. S., Rahardjo, S.,
Witjaksono, G., & Hartanto, D. (2015). Optimizing coupling region as
sensing area in optical ring resonator sensor applications. International
Journal of Technology, 6(4), 622. https://doi.org/10.14716/ijtech.v6i4.1271
Purnamaningsih, R. W., Poespawati, N.
R., Dogeche, E., & Pavlidis, D. (2016). A simple three-branch optical power
splitter design based on III-Nitride semiconductor for optical
telecommunication. International Journal of Technology, 7(4), 701. https://doi.org/10.14716/ijtech.v7i4.3172
Qureshi, S., Qamar, F., Qamar, N.,
Shahzadi, R., Ali, M., Nadeem Khan, M. F., & Haroon, F. (2020).
Bi-directional transmission of 800 Gbps using 40 channels DWDM system for
long-haul communication. 2020 3rd International Conference on Computing,
Mathematics and Engineering Technologies (iCoMET), 1–7. https://doi.org/10.1109/iCoMET48670.2020.9073834
Rahmadiansyah, M., Anggraeni, S. P.,
Firdaus, M. Y., Dewi, M. F., Rahardjo, S., Rasuanta, M. P., Hamidah, M.,
Setianingrum, L., & Hatta, A. (2022). The consideration of attenuation and
chromatic dispersion parameters to long-haul optical communication. Proceedings
of the 2022 International Conference on Computer, Control, Informatics and Its
Applications, 50–54. https://doi.org/10.1145/3575882.3575892
Ranathive, S., Vinoth Kumar, K.,
Rashed, A. N. Z., Tabbour, M. S. F., & Sundararajan, T. V. P. (2022).
Performance signature of optical fiber communications dispersion compensation
techniques for the control of dispersion management. Journal of Optical
Communications, 43(4), 611–623. https://doi.org/10.1515/joc-2019-0021
Rossetti, M., Napierala, J., Matuschek,
N., Achatz, U., Duelk, M., Vélez, C., Castiglia, A., Grandjean, N., Dorsaz, J.,
& Feltin, E. (2012). Superluminescent light emitting diodes: The best out
of two worlds. In H. Schenk, W. Piyawattanametha, & W. Noell (Eds.), 825208.
https://doi.org/10.1117/12.912759
Sabri, A. A., Jihad, N. J., & Hadi,
W. A. H. (2024). Performance analysis of different dispersion compensation
techniques in optical fiber communications system [Preprint]. Journal of
Optics. https://doi.org/10.1007/s12596-024-01682-8
Sahota, J. K., Gupta, N., & Dhawan,
D. (2020). Fiber Bragg grating sensors for monitoring of physical parameters: A
comprehensive review. Optical Engineering, 59(6), 060901. https://doi.org/10.1117/1.OE.59.6.060901
Sakthivel, S., Mansoor Alam, M., Abu
Bakar Sajak, A., Mohd Su’ud, M., & Riyaz Belgaum, M. (2024). Review of
compensation and dispersion techniques for fiber optic lightpath networks. International
Journal of Computing and Digital Systems, 15(1), 753–767. https://doi.org/10.12785/ijcds/160155
Senkans, U., Braunfelds, J., Lyashuk, I., Porins, J., Spolitis, S., &
Bobrovs, V. (2019). Research on FBG-based sensor networks and their
coexistence with fiber optical transmission systems. Journal of Sensors,
2019, 1–13. https://doi.org/10.1155/2019/6459387
Sifón, M. (2024). Science Monitoring
and Reliable Technology (SMART) to monitor the ocean using submarine cables. The
International Hydrographic Review, 30(1), 172–177. https://doi.org/10.58440/ihr-30-1-n01
Suastika, K., Sahlan, S., Nugroho, W.
H., Zubaydi, A., Misbah, M. N., & Murdjito, M. (2019). Fatigue life
assessment of waste steel reused as tsunami buoy keel structures: A case study.
International Journal of Technology, 10(4), 700. https://doi.org/10.14716/ijtech.v10i4.501
Syuaib, I., Asvial, M., & Rahardjo,
E. T. (2018). Modeling of ultra-long span bidirectional Raman transmission link
using three-segment hybrid fiber core structure. Photonics, 6(1), 2. https://doi.org/10.3390/photonics6010002
Technica. (2018). T830 in line
temperature sensor [Viewed 29 July 2025]. Technica. https://technicasa.com/t830-in-line-temperature-sensor/
Wang, B., Bai, Y., Chen, Q., Gao, H.,
Zhang, D., Jiang, L., & Qiao, X. (2023). Design and fabrication of a
differential-pressure optical fiber grating sensor for monitoring the flow rate
of fluid. Applied Optics, 62(2), 385. https://doi.org/10.1364/AO.478649
Xia, P., Zhang, L.-H., & Lin, Y.
(2019). Simulation study of dispersion compensation in optical communication
systems based on Optisystem. Journal of Physics: Conference Series, 1187(4),
042011. https://doi.org/10.1088/1742-6596/1187/4/042011
Yu, J., Xu, P., Yu, Z., Wen, K., Yang,
J., Wang, Y., & Qin, Y. (2023). Principles and applications of seismic
monitoring based on submarine optical cable. Sensors, 23(12),
5600. https://doi.org/10.3390/s23125600
Zhang, T., Wang, W., Chen, H., Zhang, X., Ma, Z., & Lv, W. (2019). Extrinsic Fabry–Perot interferometric cavity-based fiber-optic spectrum equalization filter for the Gaussian spectrum of superluminescent diodes. Applied Optics, 58(23), 6228. https://doi.org/10.1364/AO.58.006228