• International Journal of Technology (IJTech)
  • Vol 16, No 6 (2025)

A Unified Long-Haul Optical Fiber Architecture for Simultaneous High-Speed Communication and Fiber Bragg Grating-Based Sensing

A Unified Long-Haul Optical Fiber Architecture for Simultaneous High-Speed Communication and Fiber Bragg Grating-Based Sensing

Title:

A Unified Long-Haul Optical Fiber Architecture for Simultaneous High-Speed Communication and Fiber Bragg Grating-Based Sensing

Mustika Fitriana Dewi, Muhammad Yusha Firdaus, Maratul Hamidah, Rahmayati Alindra, Amalia Irma Nurwidya, Tinova Pramudya, Muhamad Asvial, Agus Muhamad Hatta, Sasono Rahardjo

Corresponding email:


Cite this article as:
Dewi, M., Firdaus, M., Hamidah, M., Alindra, R., Nurwidya, A., Pramudya, T., Asvial, M., Hatta, A., & Rahardjo, S. (2025). A unified long-haul optical fiber architecture for simultaneous high-speed communication and fiber bragg grating-based sensing. International Journal of Technology, 16 (6), 2176–2193.

19
Downloads
Mustika Fitriana Dewi Research Organization for Energy and Manufacturing, National Research and Innovation Agency, Kawasan PUSPIPTEK, Building 720, Serpong, South Tangerang, 15314, Banten, Indonesia
Muhammad Yusha Firdaus Research Organization for Energy and Manufacturing, National Research and Innovation Agency, Kawasan PUSPIPTEK, Building 720, Serpong, South Tangerang, 15314, Banten, Indonesia
Maratul Hamidah Research Organization for Energy and Manufacturing, National Research and Innovation Agency, Kawasan PUSPIPTEK, Building 720, Serpong, South Tangerang, 15314, Banten, Indonesia
Rahmayati Alindra Research Organization for Energy and Manufacturing, National Research and Innovation Agency, Kawasan PUSPIPTEK, Building 720, Serpong, South Tangerang, 15314, Banten, Indonesia
Amalia Irma Nurwidya Research Organization for Energy and Manufacturing, National Research and Innovation Agency, Kawasan PUSPIPTEK, Building 720, Serpong, South Tangerang, 15314, Banten, Indonesia
Tinova Pramudya Research Organization for Energy and Manufacturing, National Research and Innovation Agency, Kawasan PUSPIPTEK, Building 720, Serpong, South Tangerang, 15314, Banten, Indonesia
Muhamad Asvial Department of Electrical Engineering, Universitas Indonesia, Kampus Baru UI, Depok 16424, Indonesia
Agus Muhamad Hatta Department of Engineering Physics, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111, Indonesia
Sasono Rahardjo Research Organization for Energy and Manufacturing, National Research and Innovation Agency, Kawasan PUSPIPTEK, Building 720, Serpong, South Tangerang, 15314, Banten, Indonesia
Email to Corresponding Author

Abstract
<p>A Unified Long-Haul Optical Fiber Architecture for Simultaneous High-Speed Communication and Fiber Bragg Grating-Based Sensing</p>

The integration of long-haul high-speed optical communication and distributed sensing within a single optical fiber represents a crucial step toward more efficient and scalable infrastructure for real-time environmental observation and data delivery. This study examines the performance of a 120 km single-mode optical link operating at 10 Gbps, embedded with three fiber Bragg grating (FBG) sensors positioned at 30 km intervals, enabling dual functionality over a shared single strand of physical medium. A broadband amplified spontaneous emission (ASE) source is employed to simultaneously provide the 1550 nm data channel and interrogation wavelengths at 1554, 1556, and 1558 nm for the FBG sensors. System performance is assessed using standard optical communication metrics, i.e., Q-factor, bit error rate (BER), and eye diagram analysis, while sensor reliability is evaluated through reflected signal levels and wavelength shifts captured at the receiver. The results demonstrate that sensor integration introduces no significant degradation in the transmission quality. The proposed system maintained robust performance, achieving a Q-factor of 6.38 and a BER of 6.23 × 10-11 under post compensation configuration of the dispersion compensating fiber (DCF). All FBG reflection signals remain clearly distinguishable and maintain effective responsiveness to temperature variations, confirming the feasibility of concurrent distributed sensing. By unifying sensing and high-speed communication in a long-haul link, this work thereby minimizing component count, cost, and complexity, establishing a practical foundation for next-generation scientific monitoring and reliable telecommunications (SMART) infrastructure.

Fiber bragg grating; Dual-function optical fiber system; Distributed sensing; Long- haul communication; Scientific monitoring and reliable telecommunication infrastructure

References

Ali, R. S., Fattah, A. Y., & Hassib, M. D. (2022). The effects of optical fiber impairments on communication systems. Indonesian Journal of Electrical Engineering and Computer Science, 28(1), 241–253. https://doi.org/10.11591/ijeecs.v28.i1.pp241-253

Amiri, I., Rashed, A. N. Z., Mohamed, A. E. A., Aboelazm, M. B., & Yupapin, P. (2023). Nonlinear effects with semiconductor optical amplifiers. Journal of Optical Communications, 44(1), 11–17. https://doi.org/10.1515/joc-2019-0053

Asvial, M., & Paramitha, M. P. (2015). Analysis of high order dispersion and nonlinear effects in fiber optic transmission with Non Linear Schrödinger Equation model. 2015 International Conference on Quality in Research (QiR), 145–150. https://doi.org/10.1109/QiR.2015.7374915

Braunfelds, J., Spolitis, S., Porins, J., & Bobrovs, V. (2021). Fiber Bragg grating sensors integration in fiber optical systems. In Application of Optical Fiber in Engineering. IntechOpen. https://doi.org/10.5772/intechopen.94289

Chen, Y., Mark, B. L., Burnham, R., & Verdun, H. (2009). Reducing ASE effect in coherent detection by employing double-pass fiber preamplifier and time-domain filter. IEEE Journal of Quantum Electronics, 45(10), 1289–1296. https://doi.org/10.1109/JQE.2009.2024773

de la Torre, O., Floris, I., Sales, S., & Escaler, X. (2021). Fiber Bragg grating sensors for underwater vibration measurement: Potential hydropower applications. Sensors, 21(13), 4272. https://doi.org/10.3390/s21134272

Dehnaw, A. M., Manie, Y. C., Du, L.-Y., Yao, C.-K., Jiang, J.-W., Liu, B.-X., & Peng, P.-C. (2023). Integrated sensor-optics communication system using bidirectional fiber and FSO channels and hybrid deep learning techniques. Sensors, 23(20), 8434. https://doi.org/10.3390/s23208434

Elsherif, M., Salih, A. E., Muñoz, M. G., Alam, F., AlQattan, B., Antonysamy, D. S., Zaki, M. F., Yetisen, A. K., Park, S., Wilkinson, T. D., & Butt, H. (2022). Optical fiber sensors: Working principle, applications, and limitations. Advanced Photonics Research, 3(11). https://doi.org/10.1002/adpr.202100371

Firdaus, M. Y., Wibowo, D. K., Hamidah, M., Utama, R. P., Dewi, M. F., Hamdani, M., Setianingrum, L., Rahardjo, S., Purwoadi, M. A., & Purnomo, E. (2022). The effect of Fiber Bragg Grating (FBG) sensors on data channel of fiber optic communication (FOC) system. Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications, 40–43. https://doi.org/10.1145/3575882.3575890

Hayle, S. T., Manie, Y. C., Yao, C.-K., Yeh, T.-Y., Yu, C.-H., & Peng, P.-C. (2022). Hybrid of free space optics communication and sensor system using IWDM technique. Journal of Lightwave Technology, 40(17), 5862–5869. https://doi.org/10.1109/JLT.2022.3186895

Howe, B. M., Angove, M., Aucan, J., Barnes, C. R., Barros, J. S., Bayliff, N., Becker, N. C., Carrilho, F., Fouch, M. J., Fry, B., Jamelot, A., Janiszewski, H., Kong, L. S. L., Lentz, S., Luther, D. S., Marinaro, G., Matias, L. M., Rowe, C. A., Sakya, A. E., … Wilcock, W. (2022). SMART subsea cables for observing the Earth and ocean, mitigating environmental hazards, and supporting the blue economy. Frontiers in Earth Science, 9. https://doi.org/10.3389/feart.2021.775544

Howe, B. M., Arbic, B. K., Aucan, J., Barnes, C. R., Bayliff, N., Becker, N., Butler, R., Doyle, L., Elipot, S., Johnson, G. C., Landerer, F., Lentz, S., Luther, D. S., Müller, M., Mariano, J., Panayotou, K., Rowe, C., Ota, H., Song, Y. T., … Weinstein, S. (2019). SMART cables for observing the global ocean: Science and implementation. Frontiers in Marine Science, 6. https://doi.org/10.3389/fmars.2019.00424

Hu, B., Jing, W., Wei, W., & Zhao, R.-m. (2010). Analysis on dispersion compensation with DCF based on Optisystem. 2010 2nd International Conference on Industrial and Information Systems, 40–43. https://doi.org/10.1109/INDUSIS.2010.5565685

Hugar, N. R., P, P., Maleeha, & V, D. (2024). Simulation and analysis of bit error rate in optical fiber communication using Optisystem. 2024 7th International Conference on Devices, Circuits and Systems (ICDCS), 67–71. https://doi.org/10.1109/ICDCS59278.2024.10560832

International Telecommunication Union. (2004). Forward error correction for high bit-rate DWDM submarine systems (Recommendation G.975.1).

Jyotsana, K., Kaur, R., & Singh, R. (2014). Performance comparison of pre-, post-, and symmetrical-dispersion compensation techniques using DCF on 40 Gbps OTDM system for different fibre standards. Optik, 125(9), 2134–2136. https://doi.org/10.1016/j.ijleo.2013.10.059

Madani, N. A., Purnamaningsih, R. W., Poespawati, N. R., Hamidah, M., Rahardjo, S., & Wibowo, D. K. (2023). Detection of low hydrostatic pressure using Fiber Bragg Grating sensor. International Journal of Technology, 14(7), 1527. https://doi.org/10.14716/ijtech.v14i7.6714

Marra, G., Fairweather, D. M., Kamalov, V., Gaynor, P., Cantono, M., Mulholland, S., Baptie, B., Castellanos, J. C., Vagenas, G., Gaudron, J.-O., Kronjäger, J., Hill, I. R., Schioppo, M., Barbeito Edreira, I., Burrows, K. A., Clivati, C., Calonico, D., & Curtis, A. (2022). Optical interferometry–based array of seafloor environmental sensors using a transoceanic submarine cable. Science, 376(6595), 874–879. https://doi.org/10.1126/science.abo1939

Meena, M. L., & Kumar-Gupta, R. (2019). Design and comparative performance evaluation of chirped FBG dispersion compensation with DCF technique for DWDM optical transmission systems. Optik, 188, 212–224. https://doi.org/10.1016/j.ijleo.2019.05.056

Min, R., Liu, Z., Pereira, L., Yang, C., Sui, Q., & Marques, C. (2021). Optical fiber sensing for marine environment and marine structural health monitoring: A review. Optics & Laser Technology, 140, 107082. https://doi.org/10.1016/j.optlastec.2021.107082

Muhammad, F., Ali, F., Habib, U., Usman, M., Khan, I., & Kim, S. (2020). Time domain equalization and digital back-propagation method-based receiver for fiber optic communication systems. International Journal of Optics, 2020, 1–13. https://doi.org/10.1155/2020/3146374

Neheeda, P., Pradeep, M., & Shaija, P. J. (2016). Analysis of WDM system with dispersion compensation schemes. Procedia Computer Science, 93, 647–654. https://doi.org/10.1016/j.procs.2016.07.254

Nor, M. S. M., Khan, A. A., Mohamad, S., & Thirunavakkarasu, P. (2023). Development of optical fiber sensor for water salinity detection. International Journal of Technology, 14(6), 1247. https://doi.org/10.14716/ijtech.v14i6.6650

Odeh, A. (2023). Comparing dispersion compensation methods for 120 Gb/s optical transmission: Pre, post, and symmetrical schemes. The Journal of Engineering Research, 19(2), 163–179. https://doi.org/10.53540/tjer.vol19iss2pp163-179

Patnaik, B., & Sahu, P. K. (2013). Optimized ultra-high bit rate hybrid optical communication system design and simulation. Optik, 124(2), 170–176. https://doi.org/10.1016/j.ijleo.2011.11.080

Pendão, C., & Silva, I. (2022). Optical fiber sensors and sensing networks: Overview of the main principles and applications. Sensors, 22(19), 7554. https://doi.org/10.3390/s22197554

Priambodo, P. S., Rahardjo, S., Witjaksono, G., & Hartanto, D. (2015). Optimizing coupling region as sensing area in optical ring resonator sensor applications. International Journal of Technology, 6(4), 622. https://doi.org/10.14716/ijtech.v6i4.1271

Purnamaningsih, R. W., Poespawati, N. R., Dogeche, E., & Pavlidis, D. (2016). A simple three-branch optical power splitter design based on III-Nitride semiconductor for optical telecommunication. International Journal of Technology, 7(4), 701. https://doi.org/10.14716/ijtech.v7i4.3172

Qureshi, S., Qamar, F., Qamar, N., Shahzadi, R., Ali, M., Nadeem Khan, M. F., & Haroon, F. (2020). Bi-directional transmission of 800 Gbps using 40 channels DWDM system for long-haul communication. 2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), 1–7. https://doi.org/10.1109/iCoMET48670.2020.9073834

Rahmadiansyah, M., Anggraeni, S. P., Firdaus, M. Y., Dewi, M. F., Rahardjo, S., Rasuanta, M. P., Hamidah, M., Setianingrum, L., & Hatta, A. (2022). The consideration of attenuation and chromatic dispersion parameters to long-haul optical communication. Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications, 50–54. https://doi.org/10.1145/3575882.3575892

Ranathive, S., Vinoth Kumar, K., Rashed, A. N. Z., Tabbour, M. S. F., & Sundararajan, T. V. P. (2022). Performance signature of optical fiber communications dispersion compensation techniques for the control of dispersion management. Journal of Optical Communications, 43(4), 611–623. https://doi.org/10.1515/joc-2019-0021

Rossetti, M., Napierala, J., Matuschek, N., Achatz, U., Duelk, M., Vélez, C., Castiglia, A., Grandjean, N., Dorsaz, J., & Feltin, E. (2012). Superluminescent light emitting diodes: The best out of two worlds. In H. Schenk, W. Piyawattanametha, & W. Noell (Eds.), 825208. https://doi.org/10.1117/12.912759

Sabri, A. A., Jihad, N. J., & Hadi, W. A. H. (2024). Performance analysis of different dispersion compensation techniques in optical fiber communications system [Preprint]. Journal of Optics. https://doi.org/10.1007/s12596-024-01682-8

Sahota, J. K., Gupta, N., & Dhawan, D. (2020). Fiber Bragg grating sensors for monitoring of physical parameters: A comprehensive review. Optical Engineering, 59(6), 060901. https://doi.org/10.1117/1.OE.59.6.060901

Sakthivel, S., Mansoor Alam, M., Abu Bakar Sajak, A., Mohd Su’ud, M., & Riyaz Belgaum, M. (2024). Review of compensation and dispersion techniques for fiber optic lightpath networks. International Journal of Computing and Digital Systems, 15(1), 753–767. https://doi.org/10.12785/ijcds/160155

Senkans, U., Braunfelds, J., Lyashuk, I., Porins, J., Spolitis, S., & Bobrovs, V. (2019). Research on FBG-based sensor networks and their coexistence with fiber optical transmission systems. Journal of Sensors, 2019, 1–13. https://doi.org/10.1155/2019/6459387

Sifón, M. (2024). Science Monitoring and Reliable Technology (SMART) to monitor the ocean using submarine cables. The International Hydrographic Review, 30(1), 172–177. https://doi.org/10.58440/ihr-30-1-n01

Suastika, K., Sahlan, S., Nugroho, W. H., Zubaydi, A., Misbah, M. N., & Murdjito, M. (2019). Fatigue life assessment of waste steel reused as tsunami buoy keel structures: A case study. International Journal of Technology, 10(4), 700. https://doi.org/10.14716/ijtech.v10i4.501

Syuaib, I., Asvial, M., & Rahardjo, E. T. (2018). Modeling of ultra-long span bidirectional Raman transmission link using three-segment hybrid fiber core structure. Photonics, 6(1), 2. https://doi.org/10.3390/photonics6010002

Technica. (2018). T830 in line temperature sensor [Viewed 29 July 2025]. Technica. https://technicasa.com/t830-in-line-temperature-sensor/

Wang, B., Bai, Y., Chen, Q., Gao, H., Zhang, D., Jiang, L., & Qiao, X. (2023). Design and fabrication of a differential-pressure optical fiber grating sensor for monitoring the flow rate of fluid. Applied Optics, 62(2), 385. https://doi.org/10.1364/AO.478649

Xia, P., Zhang, L.-H., & Lin, Y. (2019). Simulation study of dispersion compensation in optical communication systems based on Optisystem. Journal of Physics: Conference Series, 1187(4), 042011. https://doi.org/10.1088/1742-6596/1187/4/042011

Yu, J., Xu, P., Yu, Z., Wen, K., Yang, J., Wang, Y., & Qin, Y. (2023). Principles and applications of seismic monitoring based on submarine optical cable. Sensors, 23(12), 5600. https://doi.org/10.3390/s23125600

Zhang, T., Wang, W., Chen, H., Zhang, X., Ma, Z., & Lv, W. (2019). Extrinsic Fabry–Perot interferometric cavity-based fiber-optic spectrum equalization filter for the Gaussian spectrum of superluminescent diodes. Applied Optics, 58(23), 6228. https://doi.org/10.1364/AO.58.006228