• International Journal of Technology (IJTech)
  • Vol 16, No 6 (2025)

Validation of a Temporary External Fixator for Mandibular Reconstruction: A Biomechanical and Finite Element Analysis

Validation of a Temporary External Fixator for Mandibular Reconstruction: A Biomechanical and Finite Element Analysis

Title: Validation of a Temporary External Fixator for Mandibular Reconstruction: A Biomechanical and Finite Element Analysis
Rungsan Chaiyachet, Weerayut Jina, Ekkachai Kanchanatip, Teerawat Paipongna, Surasith Piyasin, Apichart Boonma

Corresponding email:


Cite this article as:
Chaiyachet, R., Jina, W., Kanchanatip, E., Paipongna, T., Piyasin, S., & Boonma, A. (2025). Validation of a temporary external fixator for mandibular reconstruction: A biomechanical and finite element analysis. International Journal of Technology, 16 (6), 2248–2263.


13
Downloads
Rungsan Chaiyachet Department of Mechanical and Manufacturing, Engineering, Faculty of Science and Engineering, Kasetsart University, Sakon Nakhon, 47000, Thailand
Weerayut Jina Department of Mechanical and Manufacturing, Engineering, Faculty of Science and Engineering, Kasetsart University, Sakon Nakhon, 47000, Thailand
Ekkachai Kanchanatip Department of Civil and Environmental Engineering, Faculty of Science and Engineering, Kasetsart University, Sakon Nakhon, 47000, Thailand
Teerawat Paipongna Dental Department, Sakon Nakhon Hospital, Sakon Nakhon, 47000, Thailand
Surasith Piyasin Department of Mechanical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
Apichart Boonma Department of Industrial Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
Email to Corresponding Author

Abstract
Validation of a Temporary External Fixator for Mandibular Reconstruction: A Biomechanical and Finite
 Element Analysis

Mandibular reconstruction after tumor resection requires stable fixation that restores function and facial symmetry while minimizing invasiveness. This study presents and validates a bicortical screw–plate Temporary External Fixator (TEF) designed to enhance early-stage mandibular stabilization through optimized geometric configuration. An integrated approach combining finite element analysis (FEA) and experimental compression testing was employed to evaluate biomechanical performance under physiologically representative masticatory loads. Finite-element models of three TEF configurations (2-, 3-, and 4-screw) were analyzed using isotropic and anisotropic bone properties. Loads were applied as a static 600 N and a cyclic half-sine waveform. The 3-screw configuration exhibited the highest stiffness of 272.7 N/mm, lower peak cortical stress (26.49 MPa), and energy absorption of 0.96 J. The experimental tests on 3D-printed resin mandibles closely matched the FEA predictions , with displacement deviations below 5%, confirming the model’s predictive reliability. The results highlighted that strategic screw placement and spacing had a larger impact on biomechanical performance than screw count alone. The proposed TEF demonstrated favorable structural efficiency, procedural simplicity, and cost-effectiveness. The computational-experimental framework established in this work supports future patient-specific optimization and fatigue-life studies for the development of next-generation external fixators in mandibular reconstruction.

Biomechanical performance; Finite element analysis; Mandibular reconstruction; Screw-Plate system; Temporary external fixator

References

Ahmad, M., Zulkifli, N., Shuib, S., Sulaiman, S., & Abdullah, H. (2020). Finite Element Analysis of Proximal Cement Fixation in Total Hip Arthroplasty. International Journal of Technology, 11, 1046. https://doi.org/10.14716/ijtech.v11i5.4318

Ahmad Kholil, G. K. A. A. F. J. I. (2023). Finite Element Analysis of Lattice Structure Model with Control Volume Manufactured Using Additive Manufacturing. International Journal of Technology, 14(7), 291–319. https://doi.org/10.14716/ijtech.v14i7.6660

Alencar, M. G. M. d., Bortoli, M. M. D., Silva, T. C. G. d., Silva, E. D. d. O. e., & Laureano Filho, J. R. (2018). Suitability of Wrist External Fixator for Treatment of Mandibular Fracture. Journal of Craniofacial Surgery, 29(4), e371–e372. https://doi.org/10.1097/scs.0000000000004375

ANSYS Inc. (2021). ANSYS Workbench (Computer software; Version 21.0).
Bazyar, P., Baumgart, A., Altenbach, H., & Usbeck, A. (2023).
An Overview of Selected Material Properties in Finite Element Modeling of the Human Femur. Biomechanics, 3(1), 124135. https://doi.org/10.3390/biomechanics3010012

Bobinskas, A. M., Subramaniam, S. S., Vujcich, N. J., & Nastri, A. L. (2016). Bilateral distraction osteogenesis of vascularized iliac crest free flaps used in mandibular reconstruction. Plastic and Reconstructive Surgery–Global Open, 4(3), e635. https://doi.org/10.1097/GOX.0000000000000623

Bujtar, P., S´andor, G. K., Bojtos, A., Sz?ucs, A., & Barab´as, J. (2010). Finite element analysis of the human mandible at 3 different stages of life. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 110(3), 301–309. https://doi.org/10.1016/j.tripleo.2010.01.025

Chaiyachet, R., Boonma, A., & Paipongna, T. (2024). Developing A Temporary External Fixator (TEF) For Mandibular Reconstruction Using Two-Phase QFD And TRIZ Approach. Sains Malaysiana, 53(5), 1201–1218. https://doi.org/10.17576/jsm-2024-5305-17

Chaiyachet, R., Piyasin, S., Jina, W., Paipongna, T., & Boonma, A. (2025). Finite Element Analysis of a Novel Temporary External Fixator (TEF) in Mandibular Reconstruction. Journal of Applied Science and Engineering, 28(11), 2113–2125. https://doi.org/10.6180/jase.202511\ 28(11).0003

Chen, A. C.-Y., Lin, Y.-H., Kuo, H.-N., Yu, T.-C., Sun, M.-T., & Lin, C.-L. (2013). Design optimisation and experimental evaluation of dorsal double plating fixation for distal radius fracture. Injury, 44(4), 527–534. https://doi.org/10.1016/j.injury.2012.09.022

Dassault Syst`emes. (2020). SolidWorks (Computer software; Version 2020).

Ellis III, E., & Graham, J. (2002). Use of a 2.0-mm locking plate/screw system for mandibular fracture surgery. Journal of oral and maxillofacial surgery, 60(6), 642–645. https://doi.org/10.1053/joms.2002.33110

Formlabs. (2024). White Resin V4 (FLGPWH04) Technical Data Sheet [Retrieved May 20]. https://formlabs.com/materials/engineering/white-resin/

Ganser, A., Thompson, R. E., Tami, I., Neuhoff, D., Steiner, A., & Ito, K. (2007). An in Vivo Experimental Comparison of Stainless Steel and Titanium Schanz Screws for External Fixation. European Journal of Trauma and Emergency Surgery, 33(1), 59–68. https://doi.org/10.1007/s00068-007-6053-5

Govoni, F. A., Felici, N., Ornelli, M., Marcelli, V. A., Migliano, E., Pesucci, B. A., & Pistilli, R. (2023). Total mandible and bilateral TMJ reconstruction combining a customized jaw implant with a free fibular flap: a case report and literature review. Maxillofacial Plastic and Reconstructive Surgery, 45(1), 6. https://doi.org/10.1186/s40902-023-00374-w

Gutwald, R., Jaeger, R., & Lambers, F. M. (2017). Customized mandibular reconstruction plates improve mechanical performance in a mandibular reconstruction model. Computer methods in biomechanics and biomedical engineering, 20(4), 426–435. https://doi.org/10.1080/10255842.2016.1240788

Hemathulin, S., Nualsing, D., Pannucharoenwong, N., Nabudda, K., Paholpak, P., Echaroj, S., &Kongthip, P. (2024). Comparison of Treatment Positions for Tibia Fractures using the External Narrow Locking Compression Plate: 3D Finite Element Analysis. Engineered Science. https://doi.org/10.30919/es1300

Izra’ai, S. I., Abdullah, A. H., Saari, A. B., Kasim, H. A., Hazwani, F., & Marwan, S. H. (2025). Computational Evaluation of Dental Adhesive for Four Direct Restorative Procedures. International Journal of Online & Biomedical Engineering, 21(3), 183–190. https://doi.org/10.3991/ijoe.v21i03.54099

Jaber, M., Abouseif, N., Ibrahim, N., Hassan, M., & El-Ameen, A. M. (2023). Reasons for removal of miniplates used in fixation of maxillofacial bone fractures: systematic review and meta-analysis. Applied Sciences, 13(21), 11899. https://doi.org/10.3390/app132111899

Jia, Y.-F., Xuan, F.-Z., Chen, X., & Yang, F. (2014). Finite element analysis of the cyclic indentation of bilayer enamel. Journal of Physics D: Applied Physics, 47, 175401. https://doi.org/10.1088/0022-3727/47/17/175401

Kano, S. C., Binon, P. P., Bonfante, G., & Curtis, D. A. (2007). The effect of casting procedures on rotational misfit in castable abutments. International Journal of Oral & Maxillofacial Implants, 22(4). International Journal of Technology 16(6) 1-16 (2025) 15

Keddar, I., Aour, B., & Zahaf, S. (2022). Comparative Study of the Fractured Humerus Fixation by Intramedullary Nailing and Compression Plate. Journal of Failure Analysis and Prevention, 22. https://doi.org/10.1007/s11668-022-01459-w

Koper, D. C., Leung, C. A., Smeets, L. C., Laeven, P. F., Tuijthof, G. J., & Kessler, P. A. (2021). Topology optimization of a mandibular reconstruction plate and biomechanical validation. Journal of the mechanical behavior of biomedical materials, 113, 104157. https://doi.org/10.1016/j.jmbbm.2020.104157

Lewis, G. S., Mischler, D., Wee, H., Reid, J. S., & Varga, P. (2021). Finite element analysis of fracture fixation. Current osteoporosis reports, 19(4), 403–416. https://doi.org/10.1007/s11914-021-00690-y

Liu, K., Abulaiti, A., Liu, Y., Cai, F., Ren, P., & Yusufu, A. (2021). Risk factors of pin tract infection during bone transport using unilateral external fixator in the treatment of bone defects. BMC Surgery, 21(1), 377. https://doi.org/10.1186/s12893-021-01384-z

Liu, Y., Wang, P., Telha, W., Jiang, N., Bi, R., & Zhu, S. (2024). Arthroscopic reduction and rigid fixation of the anteriorly displaced temporomandibular joint disc without reduction using titanium screw: a case series. Clinical Oral Investigations, 28(2), 156. https://doi.org/10.1007/s00784-024-05552-2

Materialise. (2021). Mimics Research (Computer software; Version 21.0).

MatWeb. (2024). Information on www.matweb.com [Retrieved May 20]. https://www.matweb.com

Michael, L., Brian, S., Natalia von, W., Kyle, V., Nolan, S., & Matthew, O. (2022). Review of cost and surgical time implications using virtual patient specific planning and patient specific implants in midface reconstruction. Plastic and Aesthetic Research, 9, 26. https://doi.org/10.20517/2347-9264.2021.108

Narra, N., Val´a?sek, J., Hannula, M., Marci´an, P., S´andor, G., Hyttinen, J., & Wolff, J. (2013). Finite element analysis of customized reconstruction plates for mandibular continuity defect therapy. Journal of biomechanics, 47. https://doi.org/10.1016/j.jbiomech.2013.11.016

Pankaj, P. (2022). Devices for traumatology: biomechanics and design. In Human orthopaedic biomechanics (pp. 459–484). Elsevier. https://doi.org/10.1016/B978-0-12-8244814.00033-0

Prasadh, S., Krishnan, A. V., Lim, C., Gupta, M., & Wong, R. (2022). Titanium versus magnesium plates for unilateral mandibular angle fracture fixation: Biomechanical evaluation using 3-dimensional finite element analysis. Journal of Materials Research and Technology, 18, 2064–2076. https://doi.org/10.1016/j.jmrt.2022.02.025

Sagl, B., Schmid-Schwap, M., Piehslinger, E., Kundi, M., & Stavness, I. (2019). A dynamic jaw model with a finite-element temporomandibular joint. Frontiers in Physiology, 10, 1156. https://doi.org/10.3389/fphys.2019.01156

Schonegg, D., M¨uller, G. T., Blumer, M., Essig, H., & Wagner, M. E. (2022). Two-versus three screw osteosynthesis of the mandibular condylar head: a finite element analysis. Journal of the mechanical behavior of biomedical materials, 127, 105077. https://doi.org/10.1016/j.jmbbm.2022.105077

Shi, Q., Sun, Y., Yang, S., Van Dessel, J., L¨ubbers, H.-T., Zhong, S., Gu, Y., Bila, M., Dormaar, T., & Schoenaers, J. (2021). Failure analysis of an in-vivo fractured patient-specific Ti6Al4V mandible reconstruction plate fabricated by selective laser melting. Engineering Failure Analysis, 124, 105353. https://doi.org/10.1016/j.engfailanal.2021.105353

Smolka, W., Cornelius, C.-P., & Mast, G. (2016). Survival rates after surgical salvage procedures using mandible external pin fixation. Oral Surgery, 9(1), 19–24. https://doi.org/10.1111/ors.12163

Sood, R., Ramu, J., Thankappan, K., & Iyer, S. (2021). Reconstruction of the Mandible and Choice of Flap. In Management of oral cancers (pp. 195–210). Springer. https://doi.org/10.1007/978-981-15-6499-4\_15

Suojanen, J., Leikola, J., & Stoor, P. (2017). The use of patient-specific implants in orthognathic surgery: A series of 30 mandible sagittal split osteotomy patients. Journal of Cranio Maxillofacial Surgery, 45(6), 990–994. https://doi.org/10.1016/j.jcms.2017.02.021

Tumer, D., Gungorurler, M., Hav?tc?oglu, H., & Arman, Y. (2020). Investigation of effective coating of the Ti–6Al–4V alloy and 316L stainless steel with graphene or carbon nanotubes with finite element methods. Journal of Materials Research and Technology, 9(6), 15880–15893. https://doi.org/10.1016/j.jmrt.2020.11.052

Wang, J., Rai, R., & Armstrong, J. N. (2020). Investigation of compressive deformation behaviors of cubic periodic cellular structural cubes through 3D printed parts and FE simulations. Rapid Prototyping Journal, 26(3), 459–472. https://doi.org/10.1108/RPJ-03-2019-0069

Wang, M. C., Kiapour, A., Massaad, E., Shin, J. H., & Yoganandan, N. (2023). A guide to finite element analysis models of the spine for clinicians. Journal of Neurosurgery: Spine, 40(1), 38–44. https://doi.org/10.3171/2023.7.SPINE23164

Wilken, A., Schultz, J., Luo, Z.-X., & Ross, C. (2024). A new biomechanical model of the mammal jaw based on load path analysis. The Journal of experimental biology, 227. https://doi.org/10.1242/jeb.247030

Zheng, F., Yunfan, Z., Gong, Y., Yin, D., & Liu, Y. (2022). Variation in stress distribution modified by mandibular material property: a 3D finite element analysis. Computer Methods and Programs in Biomedicine, 229, 107310. https://doi.org/10.1016/j.cmpb.2022.107310

Zhou, F., Yang, S., Liu, J., Lu, J., Shang, D., Chen, C., Wang, H., & Ma, J. (2020). Finite element analysis comparing short-segment instrumentation with conventional pedicle screws and the Schanz pedicle screw in lumbar 1 fractures. Neurosurgical Review, 43, 301–312. https://doi.org/10.1007/s10143-019-01146-9