• International Journal of Technology (IJTech)
  • Vol 16, No 6 (2025)

Assessment of The Potential of Russian Regions for The Introduction of Industrial Microgrid

Assessment of The Potential of Russian Regions for The Introduction of Industrial Microgrid

Title: Assessment of The Potential of Russian Regions for The Introduction of Industrial Microgrid
Bugaeva Tatiana, Bakhaeva Anna, Rodionov Dmitrii

Corresponding email:


Cite this article as:
Bugaeva, T., Bakhaeva, A., & Rodionov, D. (2025). Assessment of the potential of russian regions for the introduction of industrial microgrid. International Journal of Technology, 16 (6), 1929–1943.

12
Downloads
Bugaeva Tatiana Graduate School of Industrial Economics, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
Bakhaeva Anna Graduate School of Industrial Economics, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
Rodionov Dmitrii Graduate School of Industrial Economics, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
Email to Corresponding Author

Abstract
Assessment of The Potential of Russian Regions for The Introduction of Industrial Microgrid

Industrial microgrids are independent energy systems that provide stable power supply to production facilities. In this study, the potential of Russian regions to implement this technology was assessed using cluster analysis. The study used 15 indicators to characterize the level of industrial development, electricity consumption volumes, innovation climate, energy resource availability, and the possible economic effect of using the technology. Two promising clusters were identified. The first cluster includes 7 regions: Rostov, Nizhny Novgorod, Samara, Sverdlovsk, and Chelyabinsk, as well as the Republics of Tatarstan and Bashkortostan. The second cluster includes 14 regions: Belgorod, Kursk, Lipetsk, Arkhangelsk, Vologda, Leningrad, Orenburg, Tyumen, Kemerovo, and Amur, the Republics of Komi, Karelia, and Yakutsk, as well as Perm Krai. If the potential for implementation in the first cluster is explained by the high level of industrial development and a favorable innovation climate, then the second cluster is characterized by the highest tariffs for network maintenance. Therefore, the implementation of the industrial microgrid concept in this cluster can result in the greatest savings, which makes it especially attractive.

Cluster analysis; Energy efficiency; Industrial microgrid; Power sysytem development

References

Adefarati, T., & Bansal, R. (2019). Reliability, economic and environmental analysis of a micro-grid system in the presence of renewable energy resources. Appl Energy, 236, 1089–1114. https://doi.org/10.1016/j.apenergy.2018.12.050

Ahlqvist, V., Holmberg, P., & Tangerås, T. (2022). A survey comparing centralized and decentralized electricity markets. Energy Strategy Reviews, 40, 100812. https://doi.org/10.1016/j.esr.2022.100812

Ahmed, M., Seraj, R., & Islam, S. M. S. (2020). The k-means algorithm: A comprehensive survey and performance evaluation. Electronics, 9(8), 1295. https://doi.org/10.3390/electronics9081295

Azimian, M., Amir, V., & Javadi, S. (2020). Economic and environmental policy analysis for emission-neutral multi-carrier microgrid deployment. Appl Energy, 277, 115609–115624. https://doi.org/10.1016/j.apenergy.2020.115609

Bae, I.-S., & Kim, J.-O. (2008). Reliability evaluation of customers in a microgrid. IEEE Trans Power Syst, 23(3), 1416–1422. https://doi.org/10.1109/TPWRS.2008.926710

Balasankar, V., Penumatsa, S. S. V., & Vital, T. P. R. (2021). Empirical statistical analysis and cluster studies on socio-economic status (SES) dataset. IOP Conference Series: Materials Science and Engineering, 1085(1), 012030. https://doi.org/10.1088/1757-899X/1085/1/012030

Bera, A. K., Galvao, A. F., Wang, L., & Xiao, Z. (2016). A new characteristic of the normal distribution and test for normality. Econometric Theory, 32(5), 1216–1252. https://doi.org/10.1017/S026646661500016X

Bie, Z., Zhang, P., Li, G., Hua, B., Meehan, M., & Wang, X. (2012). Reliability evaluation of active distribution systems including microgrids. IEEE Trans Power Syst, 27(4), 2342–2350. https://doi.org/10.1109/TPWRS.2012.2202695

Bolsunovskaya, M., Kudryavtseva, T., Rudskaya, I., Gintciak, A., Zhidkov, D., Fedyaevskaya, D., & Burlutskaya, Z. (2023). Digital Platform for Modeling the Development of Regional Innovation Systems of Russian Federation. International Journal of Technology, 14(8), 1779–1789. https://doi.org/10.14716/ijtech.v14i8.6843

Brazovskaia, V., & Gutman, S. (2021). Classification of Regions by Climatic Characteristics for the Use of Renewable Energy Sources. International Journal of Technology, 12(7), 1537–1545. https://doi.org/10.14716/ijtech.v12i7.5339

Burger, S. P., et al. (2019). Why distributed? A critical review of the tradeoffs between centralized and decentralized resources. IEEE Power and Energy Magazine, 17(2), 16–24. https://doi.org/10.1109/MPE.2018.2885203

Byk, F., Frolova, Y., & Myshkina, L. (2019). The efficiency of distributed and centralized power system integration. E3S Web of Conferences, 114, 05007. https://doi.org/10.1051/e3sconf/201911405007

Cagnano, A., De Tuglie, E., & Mancarella, P. (2020). Microgrids: Overview and guidelines for practical implementations and operation. Appl Energy, 258, 114039–114056. https://doi.org/10.1016/j.apenergy.2019.114039

Colak, M., & Irmak, E. (2023). A state-of-the-art review on electric power systems and digital transformation. Electric Power Components and Systems, 51(11), 1089–1112. https://doi.org/10.1080/15325008.2023.2189760

Dzyuba, A. P., & Semikolenov, A. V. (2024). Industrial microgrids as tools for managing energy efficiency in industrial regions. Strategic Decisions and Risk Management, 15(2), 100–117. https://doi.org/10.17747/2618-947X-2024-2-100-117

Dzyuba, A. P., Solovyeva, I. A., & Semikolenov, A. V. (2022). Prospects of introducing microgrids in Russian industry. Journal of New Economy, 23(2), 80–101. https://doi.org/10.29141/2658-5081-2022-23-2-5

Fang, X., Misra, S., Xue, G., & Yang, D. (2012). Smart grid—The new and improved power grid: A survey. IEEE Commun Serv Tutor, 14(4), 944–980. https://doi.org/10.1109/SURV.2011.101911.00087

Farghali, M., Osman, A. I., Chen, Z., Abdelhaleem, A., Ihara, I., Mohamed, I. M., et al. (2023). Social, environmental, and economic consequences of integrating renewable energies in the electricity sector: a review. Environmental Chemistry Letters, 21(3), 1381–1418. https://doi.org/10.1007/s10311-023-01587-1

Ferreira, L., & Hitchcock, D. B. (2009). A comparison of hierarchical methods for clustering functional data. Communications in Statistics—Simulation and Computation, 38(9), 1925–1949. https://doi.org/10.1080/03610910903168603

Glukhov, V., Shchepinin, V., Lyubek, Y., Babkin, I., & Karimov, D. (2023). Assessment of the Impact of Services and Digitalization Level on the Infrastructure Development in Oil and Gas Regions. International Journal of Technology, 14(8), 1810–1820. https://doi.org/10.14716/ijtech.v14i8.6855

Karanina, E., & Bortnikov, M. (2020). Industrial microgrids in Russia: regional systemic effects of its implementation. E3S Web of Conferences, 164, 10011. https://doi.org/10.1051/e3sconf/202016410011

Kyzym, M., Gryshova, I., & Lisin, E. (2020). Leading Trends in the Development of the Electric Power Industry. ICSEAL-6-2019, 280–288. https://doi.org/10.2991/assehr.k.200526.041

Landau, S., & Chis-Ster, I. (2010). Cluster Analysis: Overview. International Encyclopedia of Education (3rd ed., pp. 72–83). Elsevier. https://doi.org/10.1016/B978-0-08-044894-7.01315-4

Liang, H., & Zhuang, W. (2014). Stochastic modeling and optimization in a microgrid: A survey. Energies, 7(4), 2027–2050. https://doi.org/10.3390/en7042027

Mina-Casaran, J. D., Echeverry, D. F., & Lozano, C. A. (2021). Demand response integration in microgrid planning as a strategy for energy transition in power systems. IET Renew Power Gener, 15(4), 889–902. https://doi.org/10.1049/rpg2.12080

Nasledov, A. (2013). IBM SPSS Statistics 20 and AMOS: Professional Statistical Data Analysis. Petrus.

Nurulin, Y., Skvortsova, I., & Konovalova, O. (2023). Innovation Management Models in the Energy Sector. International Journal of Technology, 14(8), 1759–1768. https://doi.org/10.14716/ijtech.v14i8.6846

Onibonoje, M., Alegbeleye, O., & Ojo, A. (2023). Control Design and Management of a Distributed Energy Resources System. International Journal of Technology, 14(2), 236–245. https://doi.org/10.14716/ijtech.v14i2.5884

Parag, Y., & Ainspan, M. (2019). Sustainable microgrids: Economic, environmental and social costs and benefits of microgrid deployment. Energy for Sustainable Development, 52, 72–81. https://doi.org/10.1016/j.esd.2019.07.003

Parhizi, S., Lotfi, H., Khodaei, A., & Bahramirad, S. (2015). State of the art in research on microgrids: A review. IEEE Access, 3, 890–925. https://doi.org/10.1109/ACCESS.2015.2443119

Pelau, C., & Chinie, A. C. (2018). Cluster Analysis for the Determination of Innovative and Sustainable Oriented Regions in Europe. Studia Universitatis “Vasile Goldis” Arad–Economics Series, 28(2), 36–47. https://doi.org/10.1088/1757- 899X/1085/1/012030

Peyghami, S., Wang, H., Davari, P., & Blaabjerg, F. (2019). Mission-profile-based system-level reliability analysis in DC microgrids. IEEE Trans Ind Appl, 55(5), 5055–5067. https://doi.org/10.1109/TIA.2019.2920470

Sanz, J. F., Matute, G., Fernández, G., Alonso, M. A., & Sanz, M. (2014). Analysis of European policies and incentives for microgrids. Renew Energy Power Qual J, 8, 874–879. https://doi.org/10.24084/repqj12.516

Strasser, T., Andrén, F., Kathan, J., Cecati, C., Buccella, C., Siano, P., et al. (2015). A review of architectures and concepts for intelligence in future electric energy systems. IEEE Trans Ind Electron, 62(4), 2424–2438. https://doi.org/10.1109/TIE.2014.2361486 

Suryad, V. A., Doolla, S., & Chandorkar, M. (2017). Microgrids in India: Possibilities and challenges. IEEE Electrification Magazine, 5(2), 47–55. https://doi.org/10.1109/MELE.2017.2685880

Uddin, M., Mo, H., Dong, D., Elsawah, S., Zhu, J., & Guerrero, J. M. (2023). Microgrids: A review, outstanding issues and future trends. Energy Strategy Reviews, 49, 101127. https://doi.org/10.1016/j.esr.2023.101127

Wang, S., Li, Z., Wu, L., Shahidehpour, M., & Li, Z. (2013). New metrics for assessing the reliability and economics of microgrids in distribution system. IEEE Trans Power Syst, 28(3), 2852–2861. https://doi.org/10.1109/TPWRS.2013.2249539

Zagloel, T., Harwahyu, R., Maknun, I., Kusrini, E., & Whulanza, Y. (2023). Developing Models and Tools for Exploring the Synergies between Energy Transition and the Digital Economy. International Journal of Technology, 14(8), 1615–1622. https://doi.org/10.14716/ijtech.v14i8.6906

Zaytsev, A., Dmitriev, N., Rodionov, D., & Magradze, T. (2021). Assessment of the Innovative Potential of Alternative Energy in the Context of the Transition to the Circular Economy. International Journal of Technology, 12(7). https://doi.org/10.14716/ijtech.v12i7.5357

Zhou, X., Guo, T., & Ma, Y. (2015). An overview on microgrid technology. 2015 IEEE International Conference on Mechatronics and Automation (ICMA), 76–81. https://doi.org/10.1109/ICMA.2015.7237460

Zmuk, B. (2015). Quality of life indicators in selected European countries: Statistical hierarchical cluster analysis approach. Croatian Review of Economic, Business and Social Statistics, 1(1–2), 42–54. https://doi.org/10.1515/crebss-2016-0004