Published at : 01 Dec 2025
Volume : IJtech
Vol 16, No 6 (2025)
DOI : https://doi.org/10.14716/ijtech.v16i6.7420
| Bugaeva Tatiana | Graduate School of Industrial Economics, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia |
| Bakhaeva Anna | Graduate School of Industrial Economics, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia |
| Rodionov Dmitrii | Graduate School of Industrial Economics, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia |
Industrial microgrids are independent energy systems that provide stable power supply to production facilities. In this study, the potential of Russian regions to implement this technology was assessed using cluster analysis. The study used 15 indicators to characterize the level of industrial development, electricity consumption volumes, innovation climate, energy resource availability, and the possible economic effect of using the technology. Two promising clusters were identified. The first cluster includes 7 regions: Rostov, Nizhny Novgorod, Samara, Sverdlovsk, and Chelyabinsk, as well as the Republics of Tatarstan and Bashkortostan. The second cluster includes 14 regions: Belgorod, Kursk, Lipetsk, Arkhangelsk, Vologda, Leningrad, Orenburg, Tyumen, Kemerovo, and Amur, the Republics of Komi, Karelia, and Yakutsk, as well as Perm Krai. If the potential for implementation in the first cluster is explained by the high level of industrial development and a favorable innovation climate, then the second cluster is characterized by the highest tariffs for network maintenance. Therefore, the implementation of the industrial microgrid concept in this cluster can result in the greatest savings, which makes it especially attractive.
Cluster analysis; Energy efficiency; Industrial microgrid; Power sysytem development
Adefarati,
T., & Bansal, R. (2019). Reliability, economic and environmental analysis
of a micro-grid system in the presence of renewable energy resources. Appl
Energy, 236, 1089–1114. https://doi.org/10.1016/j.apenergy.2018.12.050
Ahlqvist,
V., Holmberg, P., & Tangerås, T. (2022). A survey comparing centralized and
decentralized electricity markets. Energy Strategy Reviews, 40, 100812. https://doi.org/10.1016/j.esr.2022.100812
Ahmed,
M., Seraj, R., & Islam, S. M. S. (2020). The k-means algorithm: A
comprehensive survey and performance evaluation. Electronics, 9(8), 1295. https://doi.org/10.3390/electronics9081295
Azimian,
M., Amir, V., & Javadi, S. (2020). Economic and environmental policy
analysis for emission-neutral multi-carrier microgrid deployment. Appl Energy,
277, 115609–115624. https://doi.org/10.1016/j.apenergy.2020.115609
Bae,
I.-S., & Kim, J.-O. (2008). Reliability evaluation of customers in a
microgrid. IEEE Trans Power Syst, 23(3), 1416–1422. https://doi.org/10.1109/TPWRS.2008.926710
Balasankar,
V., Penumatsa, S. S. V., & Vital, T. P. R. (2021). Empirical statistical analysis
and cluster studies on socio-economic status (SES) dataset. IOP Conference
Series: Materials Science and Engineering, 1085(1), 012030. https://doi.org/10.1088/1757-899X/1085/1/012030
Bera,
A. K., Galvao, A. F., Wang, L., & Xiao, Z. (2016). A new characteristic of
the normal distribution and test for normality. Econometric Theory, 32(5),
1216–1252. https://doi.org/10.1017/S026646661500016X
Bie,
Z., Zhang, P., Li, G., Hua, B., Meehan, M., & Wang, X. (2012). Reliability
evaluation of active distribution systems including microgrids. IEEE Trans
Power Syst, 27(4), 2342–2350. https://doi.org/10.1109/TPWRS.2012.2202695
Bolsunovskaya,
M., Kudryavtseva, T., Rudskaya, I., Gintciak, A., Zhidkov, D., Fedyaevskaya,
D., & Burlutskaya, Z. (2023). Digital Platform for Modeling the Development
of Regional Innovation Systems of Russian Federation. International Journal of
Technology, 14(8), 1779–1789. https://doi.org/10.14716/ijtech.v14i8.6843
Brazovskaia,
V., & Gutman, S. (2021). Classification of Regions by Climatic
Characteristics for the Use of Renewable Energy Sources. International Journal
of Technology, 12(7), 1537–1545. https://doi.org/10.14716/ijtech.v12i7.5339
Burger,
S. P., et al. (2019). Why distributed? A critical review of the tradeoffs
between centralized and decentralized resources. IEEE Power and Energy
Magazine, 17(2), 16–24. https://doi.org/10.1109/MPE.2018.2885203
Byk,
F., Frolova, Y., & Myshkina, L. (2019). The efficiency of distributed and
centralized power system integration. E3S Web of Conferences, 114, 05007. https://doi.org/10.1051/e3sconf/201911405007
Cagnano,
A., De Tuglie, E., & Mancarella, P. (2020). Microgrids: Overview and
guidelines for practical implementations and operation. Appl Energy, 258,
114039–114056. https://doi.org/10.1016/j.apenergy.2019.114039
Colak,
M., & Irmak, E. (2023). A state-of-the-art review on electric power systems
and digital transformation. Electric Power Components and Systems, 51(11),
1089–1112. https://doi.org/10.1080/15325008.2023.2189760
Dzyuba,
A. P., & Semikolenov, A. V. (2024). Industrial microgrids as tools for
managing energy efficiency in industrial regions. Strategic Decisions and Risk
Management, 15(2), 100–117. https://doi.org/10.17747/2618-947X-2024-2-100-117
Dzyuba,
A. P., Solovyeva, I. A., & Semikolenov, A. V. (2022). Prospects of
introducing microgrids in Russian industry. Journal of New Economy, 23(2),
80–101. https://doi.org/10.29141/2658-5081-2022-23-2-5
Fang,
X., Misra, S., Xue, G., & Yang, D. (2012). Smart grid—The new and improved
power grid: A survey. IEEE Commun Serv Tutor, 14(4), 944–980. https://doi.org/10.1109/SURV.2011.101911.00087
Farghali,
M., Osman, A. I., Chen, Z., Abdelhaleem, A., Ihara, I., Mohamed, I. M., et al.
(2023). Social, environmental, and economic consequences of integrating
renewable energies in the electricity sector: a review. Environmental Chemistry
Letters, 21(3), 1381–1418. https://doi.org/10.1007/s10311-023-01587-1
Ferreira,
L., & Hitchcock, D. B. (2009). A comparison of hierarchical methods for
clustering functional data. Communications in Statistics—Simulation and
Computation, 38(9), 1925–1949. https://doi.org/10.1080/03610910903168603
Glukhov,
V., Shchepinin, V., Lyubek, Y., Babkin, I., & Karimov, D. (2023).
Assessment of the Impact of Services and Digitalization Level on the
Infrastructure Development in Oil and Gas Regions. International Journal of
Technology, 14(8), 1810–1820. https://doi.org/10.14716/ijtech.v14i8.6855
Karanina,
E., & Bortnikov, M. (2020). Industrial microgrids in Russia: regional
systemic effects of its implementation. E3S Web of Conferences, 164, 10011. https://doi.org/10.1051/e3sconf/202016410011
Kyzym,
M., Gryshova, I., & Lisin, E. (2020). Leading Trends in the Development of
the Electric Power Industry. ICSEAL-6-2019, 280–288. https://doi.org/10.2991/assehr.k.200526.041
Landau,
S., & Chis-Ster, I. (2010). Cluster Analysis: Overview. International
Encyclopedia of Education (3rd ed., pp. 72–83). Elsevier. https://doi.org/10.1016/B978-0-08-044894-7.01315-4
Liang,
H., & Zhuang, W. (2014). Stochastic modeling and optimization in a
microgrid: A survey. Energies, 7(4), 2027–2050. https://doi.org/10.3390/en7042027
Mina-Casaran,
J. D., Echeverry, D. F., & Lozano, C. A. (2021). Demand response
integration in microgrid planning as a strategy for energy transition in power
systems. IET Renew Power Gener, 15(4), 889–902. https://doi.org/10.1049/rpg2.12080
Nasledov,
A. (2013). IBM SPSS Statistics 20 and AMOS: Professional Statistical Data
Analysis. Petrus.
Nurulin,
Y., Skvortsova, I., & Konovalova, O. (2023). Innovation Management Models
in the Energy Sector. International Journal of Technology, 14(8), 1759–1768. https://doi.org/10.14716/ijtech.v14i8.6846
Onibonoje,
M., Alegbeleye, O., & Ojo, A. (2023). Control Design and Management of a
Distributed Energy Resources System. International Journal of Technology,
14(2), 236–245. https://doi.org/10.14716/ijtech.v14i2.5884
Parag,
Y., & Ainspan, M. (2019). Sustainable microgrids: Economic, environmental
and social costs and benefits of microgrid deployment. Energy for Sustainable
Development, 52, 72–81. https://doi.org/10.1016/j.esd.2019.07.003
Parhizi,
S., Lotfi, H., Khodaei, A., & Bahramirad, S. (2015). State of the art in
research on microgrids: A review. IEEE Access, 3, 890–925. https://doi.org/10.1109/ACCESS.2015.2443119
Pelau,
C., & Chinie, A. C. (2018). Cluster Analysis for the Determination of
Innovative and Sustainable Oriented Regions in Europe. Studia Universitatis
“Vasile Goldis” Arad–Economics Series, 28(2), 36–47. https://doi.org/10.1088/1757-
899X/1085/1/012030
Peyghami,
S., Wang, H., Davari, P., & Blaabjerg, F. (2019). Mission-profile-based
system-level reliability analysis in DC microgrids. IEEE Trans Ind Appl, 55(5),
5055–5067. https://doi.org/10.1109/TIA.2019.2920470
Sanz,
J. F., Matute, G., Fernández, G., Alonso, M. A., & Sanz, M. (2014).
Analysis of European policies and incentives for microgrids. Renew Energy Power
Qual J, 8, 874–879. https://doi.org/10.24084/repqj12.516
Strasser,
T., Andrén, F., Kathan, J., Cecati, C., Buccella, C., Siano, P., et al. (2015).
A review of architectures and concepts for intelligence in future electric
energy systems. IEEE Trans Ind Electron, 62(4), 2424–2438. https://doi.org/10.1109/TIE.2014.2361486
Suryad,
V. A., Doolla, S., & Chandorkar, M. (2017). Microgrids in India:
Possibilities and challenges. IEEE Electrification Magazine, 5(2), 47–55. https://doi.org/10.1109/MELE.2017.2685880
Uddin,
M., Mo, H., Dong, D., Elsawah, S., Zhu, J., & Guerrero, J. M. (2023).
Microgrids: A review, outstanding issues and future trends. Energy Strategy
Reviews, 49, 101127. https://doi.org/10.1016/j.esr.2023.101127
Wang,
S., Li, Z., Wu, L., Shahidehpour, M., & Li, Z. (2013). New metrics for
assessing the reliability and economics of microgrids in distribution system.
IEEE Trans Power Syst, 28(3), 2852–2861. https://doi.org/10.1109/TPWRS.2013.2249539
Zagloel,
T., Harwahyu, R., Maknun, I., Kusrini, E., & Whulanza, Y. (2023).
Developing Models and Tools for Exploring the Synergies between Energy
Transition and the Digital Economy. International Journal of Technology, 14(8),
1615–1622. https://doi.org/10.14716/ijtech.v14i8.6906
Zaytsev,
A., Dmitriev, N., Rodionov, D., & Magradze, T. (2021). Assessment of the
Innovative Potential of Alternative Energy in the Context of the Transition to
the Circular Economy. International Journal of Technology, 12(7). https://doi.org/10.14716/ijtech.v12i7.5357
Zhou,
X., Guo, T., & Ma, Y. (2015). An overview on microgrid technology. 2015
IEEE International Conference on Mechatronics and Automation (ICMA), 76–81. https://doi.org/10.1109/ICMA.2015.7237460
Zmuk,
B. (2015). Quality of life indicators in selected European countries:
Statistical hierarchical cluster analysis approach. Croatian Review of
Economic, Business and Social Statistics, 1(1–2), 42–54. https://doi.org/10.1515/crebss-2016-0004