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Abstract: Industrial microgrids are independent energy systems that provide stable power
supply to production facilities. In this study, the potential of Russian regions to implement this
technology was assessed using cluster analysis. The study used 15 indicators to characterize
the level of industrial development, electricity consumption volumes, innovation climate, energy
resource availability, and the possible economic effect of using the technology. Two promising
clusters were identified. The first cluster includes 7 regions: Rostov, Nizhny Novgorod, Samara,
Sverdlovsk, and Chelyabinsk, as well as the Republics of Tatarstan and Bashkortostan. The
second cluster includes 14 regions: Belgorod, Kursk, Lipetsk, Arkhangelsk, Vologda, Leningrad,
Orenburg, Tyumen, Kemerovo, and Amur, the Republics of Komi, Karelia, and Yakutsk, as well
as Perm Krai. If the potential for implementation in the first cluster is explained by the high
level of industrial development and a favorable innovation climate, then the second cluster is
characterized by the highest tariffs for network maintenance. Therefore, the implementation of
the industrial microgrid concept in this cluster can result in the greatest savings, which makes
it especially attractive.

Keywords: Cluster analysis; Energy efficiency; Industrial microgrid; Power sysytem develop-
ment

1. Introduction

In recent years, several key factors have led to global changes in the field of electric power
development in economic science (Nurulin et al., 2023; Farghali et al., 2023; Kyzym et al.,
2020). First, monitoring the ecological state of the environment, which is associated with climate
change, is an important aspect. Second, the popularity of new breakthrough technologies based
on digital solutions and artificial intelligence has grown rapidly (Zagloel et al., 2023). The third
important factor is the rapid urbanization growth, which also affects the energy sector. Finally,
the structural changes taking place in the global economy, which affect trade and production,
cannot be ignored.

The requirements for ensuring global sustainable development include solving problems
related to improving energy efficiency, energy production environmental friendliness, and energy
availability. The existing centralized power supply system has exhausted its capacity to increase
the efficiency of power systems (Çolak and Irmak, 2023; Byk et al., 2019). Centralized energy
supply is being replaced by decentralized (distributed) generation, which includes not only low-
power generators but also programs for price-dependent reduction of energy consumption, smart
grids, and energy acquisition systems (Ahlqvist et al., 2022; Burger et al., 2019). In recent years,
microgrids have become very popular.

Microgrids are electrical structures with small, decentralized generation sources located
near local loads (Peyghami et al., 2019; Wang et al., 2013). According to Russian authors, a
microgrid is an electric distribution network that includes a group of consumers, distributed
generators (for example, renewable energy sources such as solar panels and wind turbines), and
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energy transmission and storage systems (Karanina and Bortnikov, 2020).
A microgrid combines power generation and consumption (Zhou et al., 2015). Unlike a

utility network that generates electricity from a centralized power plant and then distributes it
along power lines for hundreds of kilometers, a microgrid generates electricity locally. Electricity
generation typically involves a combination of backup diesel generators and renewable energy
sources, such as solar panels. Microgrids can include battery systems for storing and deploying
electricity during outages or during peak network loads.

As a result, such a system provides more environmentally friendly energy production and
reduces costs by optimizing demand, storing energy, and allowing the surplus to be sold to the
general grid during peak demand (Azimian et al., 2020; Adefarati and Bansal, 2019). Addition-
ally, the presence of intelligent control increases the overall reliability and uninterrupted power
supply (Onibonoje et al., 2023; Bie et al., 2012; Bae and Kim, 2008).

Thus, a microgrid is a tool of the digital economy that allows the creation of energy systems
that are maximally focused on the needs and requirements of specific consumers. A microgrid
aggregates all the considered distributed energy technologies and is a local intelligent power
system (Uddin et al., 2023). Modern scientific research in this field is devoted to the issues
of design (Strasser et al., 2015; Fang et al., 2012), optimization and planning (Mina-Casaran
et al., 2021; Liang and Zhuang, 2014), operation (Cagnano et al., 2020; Parhizi et al., 2015),
and incentives (Suryad et al., 2017; Sanz et al., 2014).

Interest in the development of industrial microgrids worldwide is largely due to the desire to
ensure constant power within the enterprise’s network and to insure against a drop in incoming
power from external sources. On the other hand, the ever-increasing cost of electricity in the
backbone networks also contributes to increased interest in the development of own-generation
power generation (Dzyuba et al., 2022).

The main advantages of using industrial microgrids are energy resource savings and in-
creased energy efficiency, which are achieved by increasing the efficiency of using green energy
and eliminating traditional energy sources (Parag and Ainspan, 2019). In addition, industrial
microgrids provide reliable and safe electrical system operation that can withstand loads in
emergency situations, such as software failures or cyber-attacks.

The development of industrial microgrids in Russia began with the approval of the NTI
≪Energinet≫ Roadmap by Decree of the Government of the Russian Federation, which set out
the conditions for implementing a pilot project for the creation and development of an Active
energy complex (AEC). The project under consideration can be identified as an infrastructure
project involving new markets. The main goal of the project is to create conditions for the
effective development of distributed generation by establishing a transparent and cost-effective
system of relations in the electricity market. Simultaneously, ensuring the integration of local
industrial clusters into the Unified Energy System of Russia while maintaining the reliability
and operational safety level is necessary (Dzyuba and Semikolenov, 2024).

Despite the wide range of research areas in the field of distributed generation, few modern
scientific studies have focused on the selection of a promising site for the implementation of
an industrial microgrid. The implementation of microgrids requires not only the fulfillment of
technological requirements but also the consideration of the specific characteristics of the regions.
The effectiveness of microgrids is associated with the volume and nature of the electrical load
schedule and industry affiliation of consumers. The economic effect of the implementation of the
industrial microgrid concept in each region primarily depends on the network maintenance tariff
(Dzyuba et al., 2022). It is also important to consider the climate of innovation (Bolsunovskaya
et al., 2023; Zaytsev et al., 2021). To increase the generation efficiency and reduce the payback
period of microgrid projects, it is necessary to competently approach each specific territory’s
analysis. In this regard, it is necessary to determine the regions for which it is advisable to
implement such a system (Glukhov et al., 2023). This study aims to assess the attractiveness
of regions for the implementation of an industrial microgrid using the example of the Russian
Federation. The cluster analysis method was considered as a basis for deciding on the choice of a
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site for the implementation of microgrid projects. Cluster analysis allows simultaneous splitting
by several features. The quantitative indicator similarities are calculated in each way based on
the selected data characterizing the regions (Brazovskaia and Gutman, 2021).

2. Methods

2.1 Research Methodology

Each region of Russia is a complex management system that depends on both internal and
external factors. Despite the peculiarities of each subject, many similar characteristics of various
factors are characteristic of a few regions.

Cluster analysis is widely used in tasks of socio-economic significance (Balasankar et al.,
2021), in the analysis of regions, for example, to determine the level of economic or innovative
development (Pelau and Chinie, 2018), the characteristics and specifics of individual regions; to
plan and effectively manage development processes and improve the quality of life of the popula-
tion (Žmuk, 2015). Thus, the method under consideration allows identifying regional problems,
determining the development vector, and concentrating resources on the most important areas.

The task of cluster analysis is to divide the set G of objects G into m (m – integer) clusters
(subsets) Q1, ..., Qm, based on the data contained in the set X, so that each object Gj belongs
to one and only one subset of the partition. Moreover, objects belonging to the same cluster
were similar, whereas objects belonging to different clusters were heterogeneous (Landau and
Chis-Ster, 2010).

The study consists of the following consecutive stages (Nasledov, 2013):
1. Selection of a set of attributes that will be used for comparison

2. Calculation of descriptive statistics for selected variables.

3. Selection of objects (regions) for cluster analysis.

4. Grouping objects into clusters.

5. Analysis of the results obtained.

2.2 Size of the dataset

Data were collected and analyzed for 84 subjects of the Russian Federation for 2021 to
identify the most promising regions of Russia for the development of industrial microgrids based
on the concept of active energy complexes. For the cluster analysis, 15 variables were selected
that characterize the potential attractiveness of regions in terms of the development of industrial
microgrids. The rationale for selecting these specific indicators is explained by a literature review
and data availability. Data on the indicators are published in the Federal State Statistics Service
of the Russian Federation’s annual reports. Table 1 lists the grouped variables.

It is necessary to identify the regions with the largest share of industrial energy consumption
to assess the potential of regions in the development of industrial microgrids. To do this, we
will form the first group of variables that characterize the industry’s energy consumption. These
groups include the following:

— electricity consumption for mining, manufacturing, provision of electric energy, gas and
steam, and air conditioning;

— Industrial production index;

— energy intensity of the gross regional product (GRP);

— Electric power availability per person.
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Table 1 Grouping of variables

No Data group Variables

1 Industrial energy
consumption

− electricity consumption for mining, manufacturing etc. (X1)
− GRP energy intensity (X2)
− industrial production index (X4)
− electric power availability per man (X5)

2 Economic − average network charges (X3)

3 Innovation climate

− innovation activity (X6)
− depreciation of fixed assets (X7)
− number of employees in research and development activities
(X8)
− share of investment in modernization (X9)

4 Energy supply
− average annual wind speed (X10)
− solar potential (X11)
− wholesale gas prices (X12)

5 Nature of industry
− volume of goods shipped ”mining” (X13)
− volume of goods shipped ”manufacturing” (X14)
− labour productivity index (X15)

The first indicator in this group is the absolute value of electricity consumed to produce
goods, extract minerals, and provide energy resources (gas, steam, etc.). The index of industrial
production is measured as a percentage of the previous year and reflects the aggregate changes
in the production of all types of goods, works, and services. It is a macroeconomic indicator
of the industry development of the region. Based on the index value, we can conclude that
production in the region is expanding, new enterprises are appearing, or the volume of products
produced is decreasing. The GRP energy intensity indicator can be used to assess the energy
efficiency of the production process, which reflects the ratio of energy resources spent to the
value of the domestic regional product. Key factors influencing this indicator include changes
in capacity utilization, energy prices, energy characteristics of production equipment, and GRP.
The last variable related to this group is the availability of electric power per person. This is an
indicator that characterizes the labor security of employees of industrial companies with electric
energy, that is, it is the ratio of the amount of energy consumed in production to the number of
man-hours worked. Thus, based on this indicator, we can draw a conclusion about enterprises’
level of electrification in the region under consideration.

The second group of indicators characterizes the regions’ innovative climate. To characterize
this group, indicators of the level of innovation activity, depreciation of fixed assets, the share of
investment in modernization, and the number of personnel engaged in R&D will be used. The
innovation activity level reflects the share of organizations engaged in innovation activities in
the total number of organizations.

Innovation activity is aimed at transforming, improving, or introducing processes, products,
services, etc. that have new qualities. Innovation activity has several areas, for example, in ma-
terial and technical, social, or economic terms, as well as in organizational, managerial, and legal
aspects. Thus, this type of activity includes a set of scientific, financial, and technical activities
aimed at the practical use of scientific research results and various developments. The second
indicator—the degree of depreciation of electric power enterprises’ fixed assets—may indicate
the level of need for capacity modernization. The next variable shows the share of investments
aimed at modernization and reconstruction in the total fixed asset investment volume. Based
on regional indicators on the share of investment in the modernization of fixed assets, the level
of readiness and capabilities of the region to carry out such activities, as well as the specifics of
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the investment climate in the region, can be judged.
In addition to analyzing the economic components, assessing the human capital (potential)

for implementing innovative solutions in the region is necessary. To do this, we select the
number of employees engaged in R&D as a variable. As mentioned earlier, the implementation
of innovative activity is the implementation of the results of scientific research in the form of a
specific product, service, or approach in an organization, i.e., the implementation of the result
of scientific activity in a practically significant component of any process. Thus, the more staff
involved in research activities, the better the region’s innovation climate.

The next group of data is the type of energy source received from the generating equipment
as part of an active power complex. The sources selected for analysis are renewable (wind and
solar) and nonrenewable (gas) sources. We use the average annual wind speed in the region to
determine the possible level of wind generation development, and we use the number of clear days
per year to analyze the solar potential. The data for analysis were taken from meteorological sites
on the Internet. Hybrid installations can be used due to the spontaneity of renewable energy
sources, complementing the generation of green sources with efficient gas-fired co-generation
plants. In addition, industrial enterprises can use gas in their production process; thus, in most
cases, a gas pipeline can already be installed in the enterprise, which facilitates the installation
of their own gas turbine or gas piston power plant. To assess the gas potential, wholesale gas
prices will be analyzed. The data are current as of the end of 2022 and are taken from Federal
Antimonopoly Service orders.

The choice of AEC generation sources can significantly influence the deployment and sub-
sequent development of renewable energy in the regions, which contributes to reducing the
carbon footprint, improving environmental performance, developing responsible consumption,
and achieving sustainable development goals related to production decarbonization. Thus, the
introduction of industrial microgrids can have an environmental impact. To identify the greatest
economic effect of implementing the AEC concept, analyzing the average network charges in each
region is necessary. For this study, tariffs were taken as an average value for all voltage levels
as of the end of 2022. Information on tariffs is published on the Tariff Committee website of a
particular region in the Regulations on setting Tariffs for Electric Power Transmission Services
over Electric Networks.

The last group of data allows us to draw conclusions about the nature of industry in the
region. To do this, we will take analysis data on the volume of goods shipped by economic
activity: extractive industry and manufacturing, as well as on the labor productivity index,
which reflects the ratio of the GRP physical volume index to changes in total labor costs.
Simultaneously, the GRP physical volume index is determined based on the absolute values of
GRP in constant prices, and the change in labor costs is determined based on the labor costs of
all types of work.

2.3 Descriptive statistics indicator calculation for selected variables.

In this analysis, we examine the descriptive statistics for each of the previously selected
indicators. First, we check the data distribution, which should be close to normal according
to the conditions of cluster analysis. The normality of the distribution was determined by
evaluating the following indicators (Bera et al., 2016): the average value and median, standard
deviation, kurtosis coefficient, and skewness coefficient.

A small deviation of the average value of a random variable from the standard deviation
and median is one of the signs of a normal distribution. The standard deviation is a measure of
the dispersion of a random variable’s values relative to its mathematical expectation. The next
metric to analyze is the kurtosis coefficient. For a normal distribution of a random variable,
this coefficient should approach 0. In addition, one of the significant criteria for normality is the
ratio of kurtosis to its standard error: if this ratio is modulo > 2, then the distribution is far
from normal. The skewness coefficient is the last indicator for analysis, which should approach
0 for a normal distribution. The rule for determining normality can be described as follows:
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skewness coefficient values that are more than 2 times higher than its standard error indicate
that the distribution is abnormal.

The analysis was performed using the STATISTICA software product, which implements
the functions of data analysis, data management, and visualization using statistical methods.
The descriptive statistics of the variables are presented in Table 2. All variables are characterized
by a large sample size due to the different nature of regional development, and the normality
criteria are not met for most variables.

Table 2 Results of calculating descriptive statistics of variables

variable
Descriptive statistics

number mean median st.dev asimmetry kurtosis

Industry electricity consump-
tion, mln. kWh

84 7074 3694 9945 2.927 10.258

GRP energy intensity,
kg/1000rubles

84 104 99 42 0.832 0.767

Average network charges,
rubles/MWh per month

84 1316159 1348557 491782 -0.613 1.107

Industrial production index, % 84 106 105 8 1.814 7.431

Electric power availability in in-
dustry, kWh per employee

84 70038 44663 84963 5.136 33.96

Innovation activity, % 84 10 9 5 1.005 1.6333

Depreciation of fixed assets, % 84 48 50 12 -0.864 1.6333

Share of investment in modern-
ization, %

84 18 17 8 0.743 1.417

Number of employees in research
and development activities, per

84 7888 1439 25309 6.455 47.144

Average annual wind speed, m/s 84 3 3 1 0.348 -0.945

Solar potential, days per year 84 113 100 42 0.938 0.099

Wholesale gas price,
rubles/1000m3

84 4830 5392 1690 -2.194 3.946

Volume of goods shipped ”min-
ing”, mln rubles

84 280020 21013 701051 4.451 22.597

Volume of goods shipped ”man-
ufacturing”, mln rubles

84 749739 534899 1279851 4.893 30.997

Labour productivity index, % 84 103 103 4 1.149 3.802

In addition to normality, the correlations between the selected variables must be checked.
The correlation coefficient is measured in the range from -1 to +1. The coefficient’s sign indicates
the positive or negative influence of variables. The closer the coefficient value modulo 1 is,
the stronger the relationship exists between the data. Figure 1 presents the results of the
correlation analysis. Considering the matrix of correlation coefficients, it should be noted that
the relationships between variables are not practically valid; therefore, the selected variables can
be used for cluster analysis.
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Figure 1 Results of calculating paired correlation coefficients between selected variables

2.4 Selection of objects (regions) for the cluster analysis

To conduct qualitative analysis, it is essential to perform data processing, commonly referred
to as data cleaning. In this context, we employ a graphical approach to assess the distribution’s
normality, specifically using the box-and-whisker plot.

Initially, we will exclude from our study regions where the implementation of industrial
microgrids in accordance with the Autonomous Energy Complex (AEC) concept is unfeasible
due to the absence of a two-part tariff structure for electricity transmission. Given that the
use of a single-rate tariff for transmission services lacks legislative regulation within the AEC’s
operational guidelines, the following regions will be omitted from our analysis: Kamchatka Krai,
Magadan Region, Sakhalin Region, and Chukotka Autonomous Okrug.

In addition, not all regions of Russia have completed the construction of the main gas
pipelines: there is no possibility for wholesale gas supplies. In addition to missing data, anoma-
lous values (outliers) affect the distribution of variables. Critical outliers were also recorded for
variable X1 in the Khanty-Mansi Autonomous Okrug, Krasnoyarsk Krai, and Irkutsk Region.
A clear outlier of the X2 variable was observed in the RCK. Emissions from variables X14 and
X15 were also excluded. Cities of federal significance (St. Petersburg and Moscow) also exhibit
abnormal values in several variables. Owing to the significant differences and complexity of
the organization of energy supply systems of such large cities, they are excluded from further
analysis, and the issues of the attractiveness of their territory for the implementation of micro-
grids should be considered separately. Because of data cleaning, the number of observations for
analysis decreased from 84 to 66.

Because of data processing, Table 3 presents descriptive statistics of variables for the re-
maining regions.
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Table 3 Results of calculating descriptive statistics of variables after data cleanup

variable
Descriptive statistics

number mean median st.dev asimmetry kurtosis

Industry electricity consump-
tion, mln. kWh

66 5643 3694 6406.5 2.101 4.794

GRP energy intensity,
kg/1000rubles

66 108 102 36.6 0.985 0.913

Average network charges,
rubles/MWh per month

66 1425645 1426397 384807.2 0.236 0.463

Industrial production index, % 66 106 105 7.0 2.628 13.499

Electric power availability in in-
dustry, kWh per employee

66 53411 42572 33326.3 1.118 0.803

Innovation activity, % 66 11 11 5.5 0.898 1.373

Depreciation of fixed assets, % 66 48 50 11.3 -1.272 2.335

Share of investment in modern-
ization, %

66 19 19 6.8 0.789 1.263

Number of employees in research
and development activities, per

66 4280 1613 6519 3.530 16.423

Average annual wind speed, m/s 66 3 3 1.1 0.318 -1.082

Solar potential, days per year 66 116 100 42.8 0.913 -0.257

Wholesale gas price,
rubles/1000m3

66 5377 5469 485.7 -0.383 0.289

Volume of goods shipped ”min-
ing”, mln rubles

66 151108 9706 299961.8 2.829 8.510

Volume of goods shipped ”man-
ufacturing”, mln rubles

66 597280 373998 615237.9 1.678 3.094

Labour productivity index, % 66 102 102 3.8 0.782 3.311

The picture for descriptive statistics of variables has become much better: there is a slight
deviation of the standard deviation, the average value, and the median for almost all variables.
Abnormal values of the variables were eliminated, and the data distribution became normal.
Based on the data cleaning results, you can perform clustering.

2.5 Group objects into clusters.

After preparing the data for cluster analysis, we will use the STATISTICA program’s built-
in function - standardization of variables. In this program, the normalization of indicators is
performed according to the following formula:

Z = x − x̄

σ
(1)

Where Z is the normalized value, x is the initial value; x̄ is the average value; σ is the
standard deviation.

Next, we use the hierarchical method of cluster analysis to construct a dendrogram (Fig. 2)
to determine the optimal number of clusters. As metrics, we use the Euclidean distance, and we
choose the Ward method to determine the distance between clusters (the union rule) (Ferreira
and Hitchcock, 2009). The Ward method differs from other methods in using variance analysis
to estimate distances. The method function minimizes the sum of squares for any two clusters.
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When a variety of methods were tested, Ward’s method appeared to be the most effective.
The number of clusters is chosen based on a visual analysis of the dendrogram. The greatest
difference among the distance axes between adjacent levels indicates the preferred number of
classes (corresponding to the level from which the transition to the next one is made). However,
this approach is not formalized and can therefore be easily criticized. The procedure is useful
but only as a preliminary analysis of the partitioning result. The optimal number of clusters is
assumed to be five.

Figure 2 Dendrogram of 66 observations

For the next clustering step, the k-means method will be used (Ahmed et al., 2020). To
do this, we set the number of clusters to 5. The rule for forming initial cluster centers is to
maximize the initial distances between clusters. Clusters were somewhat unequal in size. The
smallest cluster includes only 7 observations, and the largest included 26 observations.

3. Results and Discussion

3.1 Clustering results

To visualize the results of regional clustering, we created a map of the regions of Russia
indicating the resulting clusters and the regions that they include, as well as marked areas with
abnormal values or no data (Figure 3).

3.1.1 The first cluster

The first cluster includes 7 regions: Rostov, Nizhny Novgorod, Samara, Sverdlovsk, and
Chelyabinsk, as well as the Republic of Tatarstan and Bashkortostan. Among the resulting
clusters, these regions are characterized by the largest volumes of electricity consumption for
mining and processing industries, as well as for providing electric energy, gas and steam, and air
conditioning. The average value of this indicator is 17,524 million kWh. The energy intensity
of GRP is slightly higher than the national average of approximately 115 kg CU/10 thousand
rubles, indicating a low degree of energy efficiency of production. The industry index in the
regions under review is equal to the average for Russia—an increase of approximately 6% over
the year.
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Figure 3 Map of Russian regions based on clustering results

The indicator of electric power supply for industrial workers is slightly different from the
average for Russia, amounting to 63,258 million kWh. All these indicators indicate a high degree
of industrial production development and scaling, indicating the relevance of the AEC concept
in these regions.

It should be noted that manufacturing industries predominate in these regions—the average
value of the volume of goods shipped is 2.5 times higher than the average value in Russia.
Extractive industries are developed with a slight deviation from the national average: the excess
is about 14%. At the same time, labor productivity is one of the lowest among the considered
clusters, with growth compared to the previous year being only 2%.

Considering the potential energy sources for generating equipment, the rather low prices
for wholesale gas (the average for the cluster is 5,161 rubles/thousand cubic meters, which is 3%
lower than the average price for the entire sample of melons) should be noted. This indicates the
promising use of GTU or GPU. When choosing between renewable energy sources, solar energy
should be preferred: the wind potential is quite low—the average wind speed in the first cluster
is 2.6 m / s, while the average number of clear days per year is 125 days, which is 10% higher
than the value for the whole of Russia.

Assessing the innovation potential, the level of innovation activity is the highest among all
the clusters under consideration, at 19%, while the average level among all observations is only
10%. The Republic of Tatarstan is the leader in this indicator. The cluster also has a low level
of fixed asset depreciation (43%), and the share of investments in modernization exceeds the
sample’s average of about 21%. This cluster also has the largest number of personnel in the
field of scientific development, with an average number of approximately 17 thousand, which
is 2 times higher than the average value for all observations. Thus, we can discuss a favorable
investment climate in the first cluster. The average network maintenance rate for the first cluster
is 1,328,415.67 rubles/MWh per month, which is 4% lower than the national average.

3.1.2 The first cluster

The second cluster was formed by such regions as: Vladimir, Voronezh, Kaluga, Novosibirsk,
Krasnodar, Primorsky, and Khabarovsk, as well as the Republic of Crimea. Consider the first
data group for the second cluster. We primarily distinguish the regions from the rest by the
low energy intensity of GRP, which is 30% lower than the national average. Notably, the
industry index grew by an average of 9% for the cluster, but industrial consumption and electric
equipment of industrial workers are still lower by 45% than in other clusters for both indicators.
This cluster can thus be characterized as a poorly developed industry.

In terms of the nature of production, we should note the highest labor productivity index
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compared with other clusters is 106%. Manufacturing industries are the most common; the
volume of goods shipped is 15% higher than the sample average. The performance of the
extractive industry is significantly worse, with 20% below the national average.

This cluster is characterized by low values of variables in this group when assessing the
innovation climate: the level of innovation activity reaches only 9%, when the average for the
sample is 11%, and depreciation of fixed assets is 50%, with the lowest share of investment in
modernization among all clusters at 17%. However, over time, the situation may become much
better due to sufficient personnel engaged in scientific development, the value of which exceeds
the sample’s average by 1.5 times.

When choosing an energy source for new generating equipment in the AEC, it should be
noted that this cluster has the highest wholesale gas prices-8% higher than the national average.
Therefore, it is better to choose renewable energy sources, namely wind generation. The average
wind speed of the cluster is 4.4 m/s, which is almost 1.5 times higher than the national average.
The solar potential is at the level of 1 cluster. In addition, this cluster has the lowest transmission
rates, with an average of only 1,207,117.65 rubles/MWh per month, which is 13% lower than
the Russian average. Thus, the lowest economic effect among all clusters can be assumed.

3.1.3 The third cluster

The third cluster includes 14 regions: Belgorod, Kursk, Lipetsk, Arkhangelsk, Vologda,
Leningrad, Orenburg, Tyumen, Kemerovo, and Amur regions, the Komi Republic, Karelia, and
Yakutsk, as well as the Perm region. These regions have a well-developed industrial sector:
industrial consumption is 1.6 times higher than the sample average, the average industrial index
is 105%, and industrial employees have a fairly high electric power supply. Considering the
nature of the industry, it is worth noting that these are the regions with the most developed
extractive industry. The volume of goods shipped is 3 times higher than the sample’s average,
and we can also note a good indicator of the labor productivity index, which is 104%.

Simultaneously, the cluster’s innovativeness is below average: a high depreciation of fixed
assets is typical, the share of investments in modernization is low (about 17%), the number
of research employees is 40% lower than the sample’s average value, and enterprises’ innovative
activity is only 9.5%. This cluster is characterized by the lowest potential for deploying renewable
energy based on solar generation, but wind installations and gas sources are possible: the average
wind speed is 3.4 m / s, the gas price is almost equal to the average in Russia and is 5039.61
rubles/thousand cubic meters. Along with the considered variables, these regions have the
highest tariffs for network maintenance, with an average of 1,572,889.10 rubles/MW per month,
which is 10% higher than the national average. Thus, the largest savings from implementing
the AEC concept are possible in this cluster.

3.1.4 The fourth cluster

Most extensive cluster No. 4 consists of 26 regions, namely: Bryansk, Ivanovo, Kostroma,
Orel, Ryazan, Smolensk, Tambov, Tver, Tula, Yaroslavl, Novgorod, Pskov, Astrakhan, Vol-
gograd, Kirov, Penza, Saratov, Ulyanovsk, Kurgan, Omsk, and Tomsk, as well as the Mari El
Republic, The Republic of Mordovia, Udmurtia, and Chuvashia, as well as the Altai Territory.

In these regions, the industry is poorly developed: consumption is more than 2 times
lower than the sample’s average, the energy intensity of GRP is equal to the average for all
observations (109 kg cu/10 thousand rubles), the industry index is 2 percentage points lower,
and the indicator of electric equipment is 25% lower than the national average. Considering
the nature of production, manufacturing industries are more developed, but for both industries,
the indicators are lower than the average for Russia: by 72% for the extractive industry and
by 38% for manufacturing production. There is also a low value of labor productivity, only
100.06%. Thus, this cluster has a poorly developed industrial sphere, which may indicate that
AEC implementation is irrelevant. Whether enterprises have the funds to implement their own
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generation is also doubtful.
The investment climate is almost identical to cluster 3, but the level of innovation activity

of organizations is slightly higher and amounts to almost 13%. Despite the low level of industrial
development in the region, there is a good wind potential (the average annual wind speed in the
cluster is 3.5 m/s), solar generation is possible (103 clear days a year), and the wholesale gas
price is close to the average in Russia and amounts to 5329.69 rubles/thousand cubic meters.
In this cluster, the network maintenance rates are at the Russian average level: they amount to
1,427,068.76 rubles/MWh per month.

3.1.5 The fifth cluster

Finally, the last cluster includes 10 regions: the Republics of Adygea, Kalmykia, Dagestan,
Ingushetia, Kabardino-Balkaria, Karachay-Cherkessia, North Ossetia, and Chechnya, as well
as the Stavropol Territory and the Altai Republic. The fifth cluster is the least promising for
developing industrial microgrids because practically no industrial production occurs in these
regions. All values of variables in the data groups ”Consumption industry” and ”Nature of
industry” are much lower than the average for Russia. The least favorable innovation climate is
also observed. High gas prices characterize this cluster. Gas prices in this cluster are 8 percent
higher than the national average. Here is the lowest potential for the use of wind turbines, but
this cluster is the most promising for introducing solar generation.

4. Conclusions

The main direction of microgrid development is to ensure integration into the main net-
work to balance the energy system, stability, and power supply quality. The cluster analysis
identified the most promising regions in terms of implementing microgrid technology. The two
most promising clusters for the introduction of IMGs were identified. The first cluster includes
the regions of Rostov, Nizhny Novgorod, Samara, Sverdlovsk, and Chelyabinsk, as well as the
Republics of Tatarstan and Bashkortostan. The second cluster consists of 14 regions: Belgorod,
Kursk, Lipetsk, Arkhangelsk, Vologda, Leningrad, Orenburg, Tyumen, Kemerovo, and Amur,
the Republics of Komi, Sakha and Karelia, and Perm Krai. These regions have a favorable
innovative climate and a high level of industrial development. There is also potential for the
development of renewable energy sources based on wind and solar generation. Despite the iden-
tified advantages of the AEC, the most acute issue remains the issue of legal risks due to the
lack of specific requirements for the form of ownership and conditions for concluding contracts.
These issues require further study. Because of the implementation of the AEC concept, the
cost of production, energy intensity of GRP, and environmental indicators can be reduced by
introducing renewable energy generation.

Acknowledgements

The research is financed as part of the project “Development of a methodology for instru-
mental base formation for analysis and modeling of the spatial socio-economic development of
systems based on internal reserves in the context of digitalization” (FSEG-2023-0008).

Conflict of Interest

The authors declare no conflicts of interest.

References

Adefarati, T., & Bansal, R. (2019). Reliability, economic and environmental analysis of a micro-
grid system in the presence of renewable energy resources. Appl Energy, 236, 1089–1114.
https://doi.org/https://doi.org/10.1016/j.apenergy.2018.12.050

https://doi.org/https://doi.org/10.1016/j.apenergy.2018.12.050


International Journal of Technology 16(6) 1929-1943 (2025) 1941

Ahlqvist, V., Holmberg, P., & Tanger̊as, T. (2022). A survey comparing centralized and decen-
tralized electricity markets. Energy Strategy Reviews, 40, 100812. https://doi.org/https:
//doi.org/10.1016/j.esr.2022.100812

Ahmed, M., Seraj, R., & Islam, S. M. S. (2020). The k-means algorithm: A comprehensive
survey and performance evaluation. Electronics, 9 (8), 1295. https : / / doi . org / https :
//doi.org/10.3390/electronics9081295

Azimian, M., Amir, V., & Javadi, S. (2020). Economic and environmental policy analysis for
emission-neutral multi-carrier microgrid deployment. Appl Energy, 277, 115609–115624.
https://doi.org/https://doi.org/10.1016/j.apenergy.2020.115609

Bae, I.-S., & Kim, J.-O. (2008). Reliability evaluation of customers in a microgrid. IEEE Trans
Power Syst, 23 (3), 1416–1422. https://doi.org/10.1109/TPWRS.2008.926710

Balasankar, V., Penumatsa, S. S. V., & Vital, T. P. R. (2021). Empirical statistical analysis
and cluster studies on socio-economic status (SES) dataset. IOP Conference Series:
Materials Science and Engineering, 1085 (1), 012030. https://doi.org/10.1088/1757-
899X/1085/1/012030

Bera, A. K., Galvao, A. F., Wang, L., & Xiao, Z. (2016). A new characteristic of the normal
distribution and test for normality. Econometric Theory, 32 (5), 1216–1252. https://doi.
org/10.1017/S026646661500016X

Bie, Z., Zhang, P., Li, G., Hua, B., Meehan, M., & Wang, X. (2012). Reliability evaluation of
active distribution systems including microgrids. IEEE Trans Power Syst, 27 (4), 2342–
2350. https://doi.org/10.1109/TPWRS.2012.2202695

Bolsunovskaya, M., Kudryavtseva, T., Rudskaya, I., Gintciak, A., Zhidkov, D., Fedyaevskaya,
D., & Burlutskaya, Z. (2023). Digital Platform for Modeling the Development of Regional
Innovation Systems of Russian Federation. International Journal of Technology, 14 (8),
1779–1789. https://doi.org/https://doi.org/10.14716/ijtech.v14i8.6843

Brazovskaia, V., & Gutman, S. (2021). Classification of Regions by Climatic Characteristics
for the Use of Renewable Energy Sources. International Journal of Technology, 12 (7),
1537–1545. https://doi.org/https://doi.org/10.14716/ijtech.v12i7.5339

Burger, S. P., et al. (2019). Why distributed? A critical review of the tradeoffs between cen-
tralized and decentralized resources. IEEE Power and Energy Magazine, 17 (2), 16–24.
https://doi.org/10.1109/MPE.2018.2885203

Byk, F., Frolova, Y., & Myshkina, L. (2019). The efficiency of distributed and centralized power
system integration. E3S Web of Conferences, 114, 05007. https://doi.org/https://doi.
org/10.1051/e3sconf/201911405007

Cagnano, A., De Tuglie, E., & Mancarella, P. (2020). Microgrids: Overview and guidelines for
practical implementations and operation. Appl Energy, 258, 114039–114056. https://doi.
org/https://doi.org/10.1016/j.apenergy.2019.114039
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