• International Journal of Technology (IJTech)
  • Vol 1, No 1 (2010)

WC-Co Coatings for High Temperature Rocket Nozzle Applications: An Applications Note

WC-Co Coatings for High Temperature Rocket Nozzle Applications: An Applications Note

Title: WC-Co Coatings for High Temperature Rocket Nozzle Applications: An Applications Note
Bondan T. Sofyan, Christopher C. Berndt, Marizki Stefano, Haposan J. Pardede

Corresponding email:


Published at : 17 Jan 2014
Volume : IJtech Vol 1, No 1 (2010)
DOI : https://doi.org/10.14716/ijtech.v1i1.38

Cite this article as:
Sofyan, B.T., Berndt, C.C., Stefano, M., Pardede, H.J., 2010. WC-Co Coatings for High Temperature Rocket Nozzle Applications: An Applications Note. International Journal of Technology. Volume 1(1), pp. 48-56

1,317
Downloads
Bondan T. Sofyan Department of Metallurgy and Materials, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
Christopher C. Berndt School of Engineering, James Cook University, Townsville, 4811, Australia
Marizki Stefano Department of Metallurgy and Materials, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
Haposan J. Pardede Department of Metallurgy and Materials, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia
Email to Corresponding Author

Abstract
WC-Co Coatings for High Temperature Rocket Nozzle Applications: An Applications Note

High velocity oxy-fuel (HVOF) sprayed tungsten carbide – cobalt (WC-Co) coatings exhibit attributes that allow them to be a candidate material for high temperature applications; such as temperature insulators for rocket nozzles. This application note investigates the effect of surface preparation, in this case the grit blasting process, on the characteristics of the so-formed coating. The WC-Co coatings exhibited high hardness and low porosity. The composition of WC-Co coating varied in different regions, but on average was close to the composition of the initial feedstock, implying that there was no preferential loss of the material during the spray process. Microanalysis indicated diffusion of tungsten to the interface between the coating and the substrate and partly explains the high bonding strength of the coating. These physical characteristics suggest that the HVOF sprayed WC-Co is an appropriate coating technology for rocket nozzles.

Adhesion strength; Grit blasting; HVOF thermal spray; Roughness; WC-Co

Introduction

Agarwal, A., McKechnie, T. & Seal, S., 2003. Net shape nanostructured aluminum oxide structures fabricated by plasma spray forming, JTST, 12(3), pp.350-359.

Anonym, ASTM C633-01. “Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings”, Pub. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959 USA.

Ault, N. & Milligan, L., 1959. Alumina Radomes by Flame-Spray Process, Am. Ceram. Soc. Bull., 38(11), pp.661-664.

Ault, N., 1957. Characterization of Refractory Oxide Coatings Produced by Flame-Spray-ing, J. Am. Ceram. Soc., 40(3), pp.69-74.

Burns, D.H., McKechnie, T.N. & Holmes, R.R., 1990. Vacuum Plasma Spray Forming NARloy-Z and Inconel718 Components for Liquid Rocket Engines, presented at and published in Advanced Earth-to-Orbit Propulsion Technology 1990, NASA Conference 3092, Vol.11, pp.2-15.

Canfield, A.R. & Shigley, J.K., 2004. Rocket motor nozzle assemblies having vacuum plasmasprayed refractory metal shell throat inserts, methods of making, and rocket motors including same, US Patent 6,711,901; March 30, 2004.

Chiang, K-T.K. & Yang, S., 1996. Blanching resistance coating for copper alloy rocket main chamber lining, US Patent 5,557,927, September 24, 1996.

Ellis, R.E. & Berdoyes, M., 2002. An Example of Successful International Cooperation in Rocket Motor Technology, Acta Astronautica, 51(1-9), pp.47-56.

Holmes, R.R. & McKechnie, T.N., 2001. Rocket combustion chamber coating, US Patent 6,314,720; November 13, 2001.

Hong, S. J., Viswanathan, V., Rea, K., Patil, S., Deshpande, S., Georgieva, P., McKechnie, T. & Seal, S., 2005. Plasma spray formed near-net-shape MoSi2-Si3N4 bulk nanocomposites-structure property evaluation, MSE-A, 404(1-2), pp.165-172.

Lacoste, M., Lacombe, A., Joyez, P., Ellis, R.A., Lee, J.C. & Payne, F.M., 2002. Carbon/Carbon Extendible Nozzles, Acta Astronautica, 50(6), pp.357-367.

Li, C.J. & Li, W.Y., 2002. Effect of sprayed powder particle size on the oxidation behaviour of MCrAlY materials during high velocity oxygen-fuel deposition, Surface Coatings Tech, Vol.162, pp.31-41.

Liaw, Y.K., Krotz, P., Poorman, R., Zimmerman, F. & Holmes, R., 1993. VPS Forming of Refractory Metals and Ceramics for Space Furnace Containment Cartridges, pp.297-302 of Thermal Spray Coatings: Research, Design and Applications, Ed. C.C. Berndt, ASM

International, Materials Park, Ohio.

McKechnie, T.N., Holmes, R.R., Zimmerman, F.R. & Power, C.A., 1998. High temperature and highly corrosive resistant sample containment cartridge, US Patent 5,773,104; June 30, 1998.

Miele, A., Wang, T. & Williams, P.N., 2005. On Feasibility of Launch Vehicles Designs, Applied Mathematics and Computation, 164(2), pp.295-312.

Neilson, J.H. & Gilchrist, A., 1968. An Experimental Investigation into Aspects of Erosion in Rocket Motor Tail Nozzles, Wear, 11(2), pp.123-143.

Pawlowski, L., 1995. The Science and Engineering of Thermal Spray Coatings, John Wiley and Sons, London, 1995.

Qiao, Y., Fischer, T.E. & Dent, A., 2003. The effects of fuel chemistry and feedstock powder structure on the mechanical and tribological properties of HVOF thermal-sprayed WC-Co coatings with very fine structure, Surface Coatings Tech, Vol.172, pp.24-41.

Rossi, C., Orieux, S., Larangot, B., Do Conto, T. & Esteve, D., 2002. Design, Fabrication and Modeling of Solid Propellant Microrocket-Application to Micropropulsion, Sensors and Actuators A, 99, pp.125-133.

Rycroft, M., 1990. ed. The Cambridge Encyclopedia of Space, Cambridge University Press, 1990.

Schmidt, S., Beyer, S., Knabe, H., Immich, H., Meistring, R. & Gessler, A.,2004. Advanced Ceramic Matrix Composite Materials for Current and Future Propulsion Technology Applications, Acta Astronautica, 55, pp.409-420.

Singer, V. & Carr Jr., C.E., 2001. Rocket motor nozzle assemblies with erosion-resistant liners, US Patent 6,209,312; April 3, 2001.

Stoke, J. & Looney, L., 2000. Properties of WC-Co Components Produced Using the HVOF Thermal Spray Process, pp.263-271 of Thermal Spray - Surface Engineering via Applied Research, Ed. C.C. Berndt, ASM International, Materials Park, Ohio (2000).

Terner, L.L., Moskowitz, D. & Van Alsten, R.L., 1980. Novel spraying composition, method of applying the same and article produced thereby, US Patent 4,226,911; October 7, 1980.

Terner, L.L., Van Alsten, R.L. & Moskowitz, D., 1981. Article coated with beta silicon carbide and silicon, US Patent 4,288,495;September 8, 1981.

Van ierland, A., Verbeek, A., Danielse, I., Beeren, J. & Alexandrov, O., 2003. Drag reduction for gas turbine engine components, US Patent 6,666,646; December 23, 2003.

Wang, B.Q. & Shui, Z.R., 2002. The hot erosion behaviour of HVOF chromium carbide-metal cermet coatings sprayed with different powder, Wear, Vol. 253, pp.550-557.

Windhorst, T. & Blount, G., 1997. Carbon-Carbon Composites: A Summary of Recent Developments and Applications, Materials & Design, 18(1), pp.11-15.

References

Agarwal, A., McKechnie, T. & Seal, S., 2003. Net shape nanostructured aluminum oxide structures fabricated by plasma spray forming, JTST, 12(3), pp.350-359.

Anonym, ASTM C633-01. “Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings”, Pub. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA, 19428-2959 USA.

Ault, N. & Milligan, L., 1959. Alumina Radomes by Flame-Spray Process, Am. Ceram. Soc. Bull., 38(11), pp.661-664.

Ault, N., 1957. Characterization of Refractory Oxide Coatings Produced by Flame-Spray-ing, J. Am. Ceram. Soc., 40(3), pp.69-74.

Burns, D.H., McKechnie, T.N. & Holmes, R.R., 1990. Vacuum Plasma Spray Forming NARloy-Z and Inconel718 Components for Liquid Rocket Engines, presented at and published in Advanced Earth-to-Orbit Propulsion Technology 1990, NASA Conference 3092, Vol.11, pp.2-15.

Canfield, A.R. & Shigley, J.K., 2004. Rocket motor nozzle assemblies having vacuum plasmasprayed refractory metal shell throat inserts, methods of making, and rocket motors including same, US Patent 6,711,901; March 30, 2004.

Chiang, K-T.K. & Yang, S., 1996. Blanching resistance coating for copper alloy rocket main chamber lining, US Patent 5,557,927, September 24, 1996.

Ellis, R.E. & Berdoyes, M., 2002. An Example of Successful International Cooperation in Rocket Motor Technology, Acta Astronautica, 51(1-9), pp.47-56.

Holmes, R.R. & McKechnie, T.N., 2001. Rocket combustion chamber coating, US Patent 6,314,720; November 13, 2001.

Hong, S. J., Viswanathan, V., Rea, K., Patil, S., Deshpande, S., Georgieva, P., McKechnie, T. & Seal, S., 2005. Plasma spray formed near-net-shape MoSi2-Si3N4 bulk nanocomposites-structure property evaluation, MSE-A, 404(1-2), pp.165-172.

Lacoste, M., Lacombe, A., Joyez, P., Ellis, R.A., Lee, J.C. & Payne, F.M., 2002. Carbon/Carbon Extendible Nozzles, Acta Astronautica, 50(6), pp.357-367.

Li, C.J. & Li, W.Y., 2002. Effect of sprayed powder particle size on the oxidation behaviour of MCrAlY materials during high velocity oxygen-fuel deposition, Surface Coatings Tech, Vol.162, pp.31-41.

Liaw, Y.K., Krotz, P., Poorman, R., Zimmerman, F. & Holmes, R., 1993. VPS Forming of Refractory Metals and Ceramics for Space Furnace Containment Cartridges, pp.297-302 of Thermal Spray Coatings: Research, Design and Applications, Ed. C.C. Berndt, ASM

International, Materials Park, Ohio.

McKechnie, T.N., Holmes, R.R., Zimmerman, F.R. & Power, C.A., 1998. High temperature and highly corrosive resistant sample containment cartridge, US Patent 5,773,104; June 30, 1998.

Miele, A., Wang, T. & Williams, P.N., 2005. On Feasibility of Launch Vehicles Designs, Applied Mathematics and Computation, 164(2), pp.295-312.

Neilson, J.H. & Gilchrist, A., 1968. An Experimental Investigation into Aspects of Erosion in Rocket Motor Tail Nozzles, Wear, 11(2), pp.123-143.

Pawlowski, L., 1995. The Science and Engineering of Thermal Spray Coatings, John Wiley and Sons, London, 1995.

Qiao, Y., Fischer, T.E. & Dent, A., 2003. The effects of fuel chemistry and feedstock powder structure on the mechanical and tribological properties of HVOF thermal-sprayed WC-Co coatings with very fine structure, Surface Coatings Tech, Vol.172, pp.24-41.

Rossi, C., Orieux, S., Larangot, B., Do Conto, T. & Esteve, D., 2002. Design, Fabrication and Modeling of Solid Propellant Microrocket-Application to Micropropulsion, Sensors and Actuators A, 99, pp.125-133.

Rycroft, M., 1990. ed. The Cambridge Encyclopedia of Space, Cambridge University Press, 1990.

Schmidt, S., Beyer, S., Knabe, H., Immich, H., Meistring, R. & Gessler, A.,2004. Advanced Ceramic Matrix Composite Materials for Current and Future Propulsion Technology Applications, Acta Astronautica, 55, pp.409-420.

Singer, V. & Carr Jr., C.E., 2001. Rocket motor nozzle assemblies with erosion-resistant liners, US Patent 6,209,312; April 3, 2001.

Stoke, J. & Looney, L., 2000. Properties of WC-Co Components Produced Using the HVOF Thermal Spray Process, pp.263-271 of Thermal Spray - Surface Engineering via Applied Research, Ed. C.C. Berndt, ASM International, Materials Park, Ohio (2000).

Terner, L.L., Moskowitz, D. & Van Alsten, R.L., 1980. Novel spraying composition, method of applying the same and article produced thereby, US Patent 4,226,911; October 7, 1980.

Terner, L.L., Van Alsten, R.L. & Moskowitz, D., 1981. Article coated with beta silicon carbide and silicon, US Patent 4,288,495;September 8, 1981.

Van ierland, A., Verbeek, A., Danielse, I., Beeren, J. & Alexandrov, O., 2003. Drag reduction for gas turbine engine components, US Patent 6,666,646; December 23, 2003.

Wang, B.Q. & Shui, Z.R., 2002. The hot erosion behaviour of HVOF chromium carbide-metal cermet coatings sprayed with different powder, Wear, Vol. 253, pp.550-557.

Windhorst, T. & Blount, G., 1997. Carbon-Carbon Composites: A Summary of Recent Developments and Applications, Materials & Design, 18(1), pp.11-15.