• Vol 1, No 1 (2010)
  • Chemical Engineering

Investigating the Nanostructural Evolution of TiO2 Nanoparticles in the Sol-Gel Derived TiO2-Polymethyl Methacrylate Nanocomposites

Akhmad Herman Yuwono, Yu Zhang, John Wang

Corresponding email: ahyuwono@metal.ui.ac.id

Published at : 17 Jan 2014
IJtech : IJtech Vol 1, No 1 (2010)
DOI : https://doi.org/10.14716/ijtech.v1i1.32

Cite this article as:
Yuwono, A.H., Zhang, Y., Wang, J., 2010. Investigating the Nanostructural Evolution of TiO2 Nanoparticles in the Sol-Gel Derived TiO2-Polymethyl Methacrylate Nanocomposites. International Journal of Technology. Volume 1(1), pp. 11-19

Akhmad Herman Yuwono Department of Metallurgy and Materials Engineering, Faculty of Engineering Universitas Indonesia, Depok 16424, Indonesia
Yu Zhang Department of Materials Science and Engineering, Faculty of Engineering National University of Singapore, Singapore 117574
John Wang Department of Materials Science and Engineering, Faculty of Engineering National University of Singapore, Singapore 117574
Email to Corresponding Author


Nanocomposite thin films consisting of titanium oxide, or TiO2, nanoparticles embedded in a polymer matrix represent a new class of potential materials for optoelectronic applications such as optical switches, waveguides, high refractive indices and non-linear optical devices. Among the various processing techniques under development for these nanocomposites, the in situ sol-gel process is known to be versatile as it enables control of the inorganic-organic interaction at various molecular, nanometer, and micrometer scales. However, the sol-gel process has a major limitation, which is the low crystallinity in the resulting TiO2 phase due to relatively low processing temperatures. Therefore, the current research is aimed at investigating the nanostructural evolution of theTiO2 crystallite during the in situ sol-gel process to gain a better understanding of the mechanisms responsible for the largely amorphous nature of TiO2 nanoparticles. For this purpose, two sol-gel parameters, i.e., the hydrolysis ratio (Rw) and pH value of the TiO2 precursor solution were varied. On the basis of XRD and FTIR analyses, it was found that the largely amorphous TiO2 state is related to the fast development of stiff Ti-OH networks during the hydrolysis and condensation stages of the sol-gel process, and concurrently worsened by the formation of the rigid PMMA matrix upon thermal annealing.

Hydrolysis ratio; Inorganic-organic nanocomposites; pH; TiO2 nanostructural evolution


Brinker, C.J. & Hurd, A.J., 1994. Fundamentals of sol-gel dip-coating, J. Phys. III France Volume 4, pp.1231-1242.

Burgos, M. & Langlet, M., 1999. The sol-gel transformation of TIPT coatings: a FTIR study, Thin Solid Films, Volume 349, pp.19-23.

Chen, W. C., Lee, S. J., Lee, L.H. & Lin, J. L., 1999. Synthesis and characterization of trialkoxysilane capped poly(methylmethacrylate) – titania hybrid optical thin film, J. Mater. Chem., Volume 9, pp. 2999-3003.

Chen, X.C., 2002. Preparation and property of TiO2 nanoparticle dispersed polyvinyl alcohol composite materials, J. Mater. Sci. Lett. Volume 21, pp.1637-1639.

Chiang, C.L., Ma, C.C., Wu, D. L. & Kuan, H.C., 2003. Preparation, characterization, and properties of novolac-type phenolic/SiO2 hybrid organic-inorganic nanocomposite materials

by sol-gel method, J. Polym. Sci. Polym. Chem., Volume 41, pp.905-913.

Djaoued, Y., Badilescu, S., Ashrit, P.V., Bersani, D., Lottici , P.P. & Brüning, R., 2002. Low Temperature Sol-Gel Preparation of Nanocrystalline TiO2 Thin Films, J. of Sol-Gel. Sci. Technol., Volume 24, pp.247-254.

Elim, H.I., Ji,W., Yuwono, A.H., Xue, J.M. & Wang, J., 2003. Ultrafast optical nonlinearity in poly(methylmethacrylate)-TiO2 nanocomposites, Appl. Phys. Lett., Volume 82 Number 16, pp.2691-2693.

Fischer, G.L., Boyd, R.W., Gehr, R.J., Jenekhe, S.A., Osaheni, J.A., Sipe J.E. & Weller-Brophy, L.A., 1995. Enhanced nonlinear optical response of composite materials Phys. Rev. Lett., Volume 74, Number 10, pp.1871-1874.

Gopal, M., Moberly Chan, W.J. & De Jonghe, L.C., 1997. Room temperature synthesis of crystalline metal oxides, J. Mater. Sci., Volume 32, pp.6001-6008.

Kallala, M., Sanchez, C. & Cabane, B., 1992. SAXS study of gelation and precipitation in titanium-based systems, J. Non-Crys.Solids, Volume 147-148, pp.189-193.

Kallala, M., Sanchez, C. & Cabane, B., 1993. Structures of inorganic polymers in sol-gel processes based on titanium oxide, Phys. Rev. E, Volume 48, pp.3692-3704.

Langlet, M., Burgos, M., Couthier, C., Jimenez, C., Morant, C. & Manso, M., 2001. Low Temperature Preparation of High Refractive Index and Mechanically Resistant Sol-gel TiO2 Films for Multilayer Antireflective Coating Applications, J. Sol?Gel. Sci. Technol., Volume 22, pp.139-150.

Leaustic, A., Babonneau, F. & Livage, J., 1989. Structural investigation of the hydrolysiscondensation process of titanium alkoxides Ti(OR)4 (OR = OPr-iso, OEt) modified by acetylacetone. 1. Study of the alkoxide modification, Chem. Mater. Volume 1, pp.240-247.

Lee, L. H. & Chen, W.C., 2001. High-Refractive-Index Thin Films Prepared from Trialkoxysilane-Capped Poly(methyl methacrylate)?Titania Materials, Chem. Mater., Volume 13, pp.1137-1142.

Livage,J., Henry, M. & Sanchez, C., 1988. Sol-gel chemistry of transition metal oxides, Prog. Solid State Chem., Volume 18, pp.259-341.

Que, W., Zhou,Y., Lam, Y.L., Chan, Y.C., Cheng, S.D., Sun Z.& Kam, C.H., 2000.

Microstructural and Spectroscopic Studies of Sol-Gel Derived Silica-Titania Waveguide, J. Sol?Gel. Sci. Technol., Volume 18, pp.77-83.

Wang, B., Wilkes, G.L., Hedrick, J.C., Liptak, S.C. & McGrath, J.E., 1991. New highrefractive-index organic/inorganic hybrid materials from sol-gel processing Macromolecules, Volume 24, pp.3449-3450.

Wang, S.X., Wang, M.T., Lei, Y. & Zhang, L.D., 1999. "Anchor effect” in poly(styrene maleic anhydride)/TiO2 nanocomposites, J. Mater. Sci. Lett., Volume 18, pp.2009-2012.

Watson, S., Beydoun, D., Scott, J. & Amal, R., 2004. Preparation of nanosized crystalline TiO2 particles at low temperature for photocatalysis, J. Nanopart. Res., Volume 6, pp.193-207.

Xiong, M., Zhou, S., Wu, L., Wang B. & Yang, L., 2004. Sol–gel derived organic–inorganic hybrid from trialkoxysilane-capped acrylic resin and titania: effects of preparation conditions on the structure and properties, Polymer, Volume 45, pp.8127-8138.

Xiong, M., Zhou, S., You, B. & Wu, L., 2005. Trialkoxysilane-capped acrylic resin/titania organic-inorganic hybrid optical films prepared by the sol-gel process, Polymer, Volume 43, pp.637-649.

Xiong, M.N., Zhou, S.X., You, B., Gu, G.X. & Wu, L.M., 2004. Effect of preparation of titania sol on the structure and properties of acrylic resin/titania hybrid materials, J. Polym. Sci.

Polym. Phys., Volume 42, pp.3682-3694.

Yoldas, B.E., 1979. Formation of titania-silica glasses by low temperature chemical polymerization, J.Mater. Sci., Volume 14, pp.1843-1849.

Yoldas, B.E., 1986. Zirconium oxides formed by hydrolytic condensation of alkoxides and parameters that affect their morphology, J. Mater. Sci., Volume 21, pp.1080-1086.

Yu, H. F. & Wang, S.M., 2000. Effects of water content and pH on gel-derived TiO2–SiO2 J. Non-Cryst. Solids, Volume 261, pp. 260-267.

Yuwono, A.H., Xue, J.M., Wang, J., Elim, H.I., Ji, W., Li, Y. & White,T.J., 2003. White, Transparent nanohybrids of nanocrystalline TiO2 in PMMA with unique nonlinear optical behavior, J. Mater. Chem, Volume 13, pp.1475-1479.

Zhang, J., Ju, X., Wang, B.J., Li, Q.S., Liu T. & Hu, T.D., 2001. Study on the optical properties of PPV/TiO2 nanocomposites., Synth. Met. Volume 118, pp.181-185.

Zhang, J., Luo, S. & Gui,L., 1997. Poly(methylmethacrylate)–titania hybrid materials by sol–gel processing, J. Mater. Sci., Volume 32, pp.1469-1472.