• International Journal of Technology (IJTech)
  • Vol 17, No 1 (2026)

Prostaglandin Production in Marine Diatom Heterologously Expressing Cyclooxygenase

Prostaglandin Production in Marine Diatom Heterologously Expressing Cyclooxygenase

Title:

Prostaglandin Production in Marine Diatom Heterologously Expressing Cyclooxygenase

Mayu Murakami, Miho Kikuchi, Yuto Kurizaki, Satoshi Murata, Yoshiaki Maeda , Hiroshi Tsugawa , Tsuyoshi Tanaka

Corresponding email:


Cite this article as:
Murakami, M., Kikuchi, M., Kurizaki, Y., Murata, S., Maeda, Y., Tsugawa, H., & Tanaka, T. (2026). Prostaglandin production in marine diatom heterologously expressing cyclooxy-genase. International Journal of Technology, 17 (1), 261-271


12
Downloads
Mayu Murakami Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 183-8588, Japan
Miho Kikuchi Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 183-8588, Japan
Yuto Kurizaki Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 183-8588, Japan
Satoshi Murata Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 183-8588, Japan
Yoshiaki Maeda Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan
Hiroshi Tsugawa Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 183-8588, Japan
Tsuyoshi Tanaka Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 183-8588, Japan
Email to Corresponding Author

Abstract
<p>Prostaglandin Production in Marine Diatom Heterologously Expressing Cyclooxygenase</p>

Prostaglandins (PGs) are biologically active molecules produced from C20 polyunsaturated fatty acids through the sequential actions of cyclooxygenase (COX) and various PG synthases. PGs are used for pharmaceutical purposes to induce labor and treat glaucoma. Currently, the market size of PGs was 17.5 billion US dollars in 2010. Commercial PGs are produced via chemical synthesis, which involves many reaction and purification steps, resulting in high production costs. In contrast, PG bioproduction using transgenic diatoms, which accumulate high amounts of C20 fatty acids (PG precursors), can be an eco-friendly alternative. However, PG production in microalgae remains limited. In this study, we examined the effect of newly identified diatom-derived cox genes on PG production in Phaeodactylum tricornutum, a model diatom that accumulates substantial amounts of eicosapentaenoic acid and arachidonic acid. Two cox genes from Skeletonema marinoi and Thalassiosira rotula were heterologously expressed, and PG production was detected only in the transformant expressing T. rotula-derived cox. The Trcox transformant exhibited a relative PG production level of 1.8, whereas the Smcox transformant produced no detectable PGs. The PG profile of the Trcox transformant consisted of 22.0% PGD2, 30.0% PGE2, 2.2% PGF2, 19.3% PGD3, 19.7% PGE3, and 6.9% PGF3To the best of our knowledge, this is the first report to demonstrate the PGs production in transgenic P. tricornutum with the diatom-derived cox gene. These and the findings from our results may contribute to the further application of diatoms in the production of industrial PGs.

Cyclooxygenase, Microalgae, Polyunsaturated fatty acid, Prostaglandins

Supplementary Material
FilenameDescription
R1-CE-8219-20251125165531.docx ---
References

Bowler, C., Allen, A. E., Badger, J. H., Grimwood, J., Jabbari, K., Kuo, A., & Grigoriev, I. V. (2008). The phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature, 456 (7219), 239–244. https://doi.org/https://doi.org/10.1038/nature07410

Cercado, A. P., Ballesteros, F. C., & Capareda, S. C. (2018). Biodiesel from three microalgae transesterification processes using different homogeneous catalysts. International Journal of Technology, 9 (4), 645–651. https://doi.org/https://doi.org/10.14716/ijtech.v9i4.1145

Coulthard, G., Erb, W., & Aggarwal, V. K. (2012). Stereo-controlled organocatalytic synthesis of prostaglandin pgf in seven steps. Nature, 489 (7415), 278–281. https://doi.org/10.1038/nature11411

Cui, Y., Thomas-Hall, S. R., & Schenk, P. M. (2019). Phaeodactylum tricornutum microalgae as a rich source of omega-3 oil. Food Chemistry, 297, 124937. https://doi.org/10.1016/j.foodchem.2019.06.004

Di-Dato, V., Barbarinaldi, R., Amato, A., Di Costanzo, F., Fontanarosa, C., Perna, A., Amoresano, A., Esposito, F., Cutignano, A., Ianora, A., & Romano, G. (2020). Variation in prostaglandin metabolism during growth of the diatom thalassiosira rotula. Scientific Reports, 10, 5374. https://doi.org/https://doi.org/10.1038/s41598-020-61967-3

Di-Dato, V., Di Costanzo, F., Barbarinaldi, R., Perna, A., Ianora, A., & Romano, G. (2019). Unveiling the presence of biosynthetic pathways for bioactive compounds in the thalassiosira rotula transcriptome. Scientific Reports, 9, 9893. https://doi.org/10.1038/s41598-019-46276-8

Di-Dato, V., Orefice, I., Amato, A., Fontanarosa, C., Amoresano, A., Cutignano, A., Ianora, A., & Romano, G. (2017). Animal-like prostaglandins in marine microalgae. The ISME Journal, 11 (7), 1722–1726. https://doi.org/10.1038/ismej.2017.27

Guo, W., Weng, Y., Ma, W., Chang, C., Gao, Y., Huang, X., & Zhang, F. (2024). Improving lipid content in the diatom phaeodactylum tricornutum by the knockdown of the enoyl-coa hydratase using crispr interference. Current Issues in Molecular Biology, 46 (10), 10923–10933. https://doi.org/10.3390/cimb46100649

Kanamoto, H., Takemura, M., & Ohyama, K. (2011). Identification of a cyclooxygenase gene from the red alga gracilaria vermiculophylla and bioconversion of arachidonic acid to pgf in engineered escherichia coli. Applied Microbiology and Biotechnology, 91 (4), 1121–1129. https://doi.org/10.1007/s00253-011-3349-5

Kang, K. H., Qian, Z. J., Ryu, B., & Kim, S. K. (2011). Characterization of growth and protein contents from microalgae navicula incerta with the investigation of antioxidant activity of enzymatic hydrolysates. Food Science and Biotechnology, 20 (1), 183–191. https://doi.org/10.1007/s10068-011-0025-6

Kartika, R., Ritonga, A. H., Sulastri, L., Nurliana, S., Irawan, D., & Simanjuntak, P. (2023). Biosorption of hexavalent chromium cr(vi) using microalgae scenedesmus sp as environmental bioindicator. International Journal of Technology, 14 (4), 791–799. https://doi.org/10.14716/ijtech.v14i4.5188

Kim, G., Lee, S., Karin, E. L., Kim, H., Moriwaki, Y., Ovchinnikov, S., Steinegger, M., & Mirdita, M. (2025). Easy and accurate protein structure prediction using colabfold. Nature Protocols, 20 (3), 620–642. https://doi.org/https://doi.org/10.1038/s41596-024-01060-5

Konopka, C. K., Glanzner, W. G., Rigo, M. L., Rovani, M. T., Comim, F. V., Gon ?calves, P. B. D., Morais, E. N., Antoniazzi, A. Q., Mello, C. F., & Cruz, I. B. M. (2015). Responsivity to pge2 labor induction involves concomitant differential prostaglandin e receptor gene expression in cervix and myometrium. Genetics and Molecular Research, 14 (3), 10877–10887. https://doi.org/https://doi.org/10.4238/2015.September.9.25

Maeda, Y., Tsuru, Y., Matsumoto, N., Nonoyama, T., Yoshino, T., Matsumoto, M., & Tanaka, T. (2021). Prostaglandin production by the microalga with heterologous expression of cyclooxygenase. Biotechnology and Bioengineering, 118 (7), 2734–2743. https://doi.org/10.1002/bit.27792

Marcolina, A., Vu, K., & Annaswamy, T. M. (2021). Lumbar spinal stenosis and potential management with prostaglandin e1 analogs. American Journal of Physical Medicine and Rehabilitation, 100 (3), 297–302. https://doi.org/10.1097/PHM.0000000000001620

Miller, S. B. (2006). Prostaglandins in health and disease: An overview. Seminars in Arthritis and Rheumatism, 36 (1), 37–49. https://doi.org/https://doi.org/10.1016/j.semarthrit.2006.03.005

Mirdita, M., Sch ?utze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022). Colabfold: Making protein folding accessible to all. Nature Methods, 19 (6), 679–682. https://doi.org/https://doi.org/10.1038/s41592-022-01488-1

Mirzayanti, Y. W., Marlinda, L., Irawan, H., Al Muttaqii, M., Ma’sum, Z., Asri, N. P., & Chern, J. M. (2024). Performance of in-situ stirring batch reactor transesterification of nannochloropsis sp microalgae into biodiesel. International Journal of Technology, 15 (4), 859–869. https://doi.org/https://doi.org/10.14716/ijtech.v15i4.6678
Miyagawa, A., Okami, T., Kira, N., Yamaguchi, H., Ohnishi, K., & Adachi, M. (2009). High efficiency transformation of the diatom phaeodactylum tricornutum with a promoter from the diatom cylindrotheca fusiformis. Phycological Research, 57 (2), 142–146. https://doi.org/10.1111/j.1440-1835.2009.00531.x

Mohamed, M. E., & Lazarus, C. M. (2014). Production of prostaglandins in transgenic arabidopsis thaliana. Phytochemistry, 102, 74–79. https://doi.org/10.1016/j.phytochem.2014.02.013

Peng, H., & Chen, F. E. (2017). Recent advances in asymmetric total synthesis of prostaglandins. Organic and Biomolecular Chemistry, 15 (30), 6281–6301. https://doi.org/10.1039/C7OB01341H

Prihantini, N. B., Maulana, F., Wardhana, W., Takarina, N. D., Nurdin, E., Handayani, S., Nasruddin, & Haryani, G. S. (2021). Wild mixed culture microalgae biomass from ui agathis small lake harvested directly using ultrasound harvesting module as biofuel raw material. International Journal of Technology, 12 (5), 1081–1090. https://doi.org/10.14716/ijtech.v12i5.5226

Ricciotti, E., & FitzGerald, G. A. (2011). Prostaglandins and inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 31 (5), 986–1000. https://doi.org/10.1161/ATVBAHA.110.207449

Rouzer, C. A., & Marnett, L. J. (2020). Structural and chemical biology of the interaction of cyclooxygenase with substrates and non-steroidal anti-inflammatory drugs. Chemical Reviews, 120 (15), 7592–7641. https://doi.org/10.1021/acs.chemrev.0c00215

Ruan, Y. C., Zhou, W., & Chan, H. C. (2011). Regulation of smooth muscle contraction by the epithelium: Role of prostaglandins. Physiology, 26 (3), 156–170. https://doi.org/10.1152/physiol.00036.2010

Seibold, S. A., Ball, T., Hsi, L. C., Mills, D. A., Abeysinghe, R. D., Micielli, R., Rieke, C. J., Culier, R. I., & Smith, W. L. (2003). Histidine 386 and its role in cyclooxygenase and peroxidase catalysis by prostaglandin-endoperoxide h synthases. Journal of Biological Chemistry, 278 (46), 46163–46170. https://doi.org/https://doi.org/10.1074/jbc.M306319200

Seo, M. J., & Oh, D. K. (2017). Prostaglandin synthases: Molecular characterization and involvement in prostaglandin biosynthesis. Progress in Lipid Research, 66, 50–68. https://doi.org/10.1016/j.plipres.2017.04.003

Siaut, M., Heijde, M., Mangogna, M., Montsant, A., Coesel, S., Allen, A., Manfredonia, A., Falciatore, A., & Bowler, C. (2007). Molecular toolbox for studying diatom biology in phaeodactylum tricornutum. Gene, 406 (1–2), 23–35. https://doi.org/10.1016/j.gene.2007.05.022

Swan, C. E., & Breyer, R. M. (2011). Prostaglandin e2 modulation of blood pressure homeostasis: Studies in rodent models. Prostaglandins, Other Lipid Mediators, 96 (1–4), 10–13. https://doi.org/10.1016/j.prostaglandins.2011.07.001

Takemura, M., Kanamoto, H., Nagaya, S., & Ohyama, K. (2013). Bioproduction of prostaglandins in a transgenic liverwort, marchantia polymorpha. Transgenic Research, 22 (5), 905–911. https://doi.org/https://doi.org/10.1007/s11248-013-9699-2

Varvas, K., Kasvandik, S., Hansen, K., J ?arving, I., Morell, I., & Samel, N. (2013). Structural and catalytic insights into the algal prostaglandin h synthase reveal atypical features of the first non-animal cyclooxygenase. Biochimica et Biophysica Acta, 1831 (4), 863–871. https://doi.org/https://doi.org/10.1016/j.bbalip.2012.11.010

Vlachakis, D., Pavlopoulou, A., Kazazi, D., & Kossida, S. (2013). Unraveling microalgal molecular interactions using evolutionary and structural bioinformatics. Gene, 528 (2), 109–119. https://doi.org/10.1016/j.gene.2013.07.039

Xin, Q., Yu, G., Feng, I., & Dean, J. (2023). Chromatin remodeling of prostaglandin signaling in smooth muscle enables mouse embryo passage through the female reproductive tract. Developmental Cell, 58 (18), 1716–1732.e8. https://doi.org/10.1016/j.devcel.2023.08.025

Yang, Y. H., Du, L., Hosokawa, M., Miyashita, K., Kokubun, Y., Arai, H., & Taroda, H. (2017). Fatty acid and lipid class composition of the microalga phaeodactylum tricornutum. Journal of Oleo Science, 66 (4), 363–368. https://doi.org/10.5650/jos.ess16205

Yu, R., Xiao, L., Zhao, G., Christman, J. W., & van Breemen, R. B. (2011). Competitive enzymatic interactions determine the relative amounts of prostaglandins e2 and d2. The Journal of Pharmacology and Experimental Therapeutics, 339 (2), 716–725. https://doi.org/10.1124/jpet.111.185405