Prostaglandin Production in Marine Diatom Heterologously Expressing Cyclooxygenase
Published at : 28 Jan 2026
Volume : IJtech
Vol 17, No 1 (2026)
DOI : https://doi.org/10.14716/ijtech.v17i1.8219
| Mayu Murakami | Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 183-8588, Japan |
| Miho Kikuchi | Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 183-8588, Japan |
| Yuto Kurizaki | Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 183-8588, Japan |
| Satoshi Murata | Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 183-8588, Japan |
| Yoshiaki Maeda | Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan |
| Hiroshi Tsugawa | Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 183-8588, Japan |
| Tsuyoshi Tanaka | Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 183-8588, Japan |
Prostaglandins (PGs) are biologically active molecules produced from C20 polyunsaturated fatty acids through the sequential actions of cyclooxygenase (COX) and various PG synthases. PGs are used for pharmaceutical purposes to induce labor and treat glaucoma. Currently, the market size of PGs was 17.5 billion US dollars in 2010. Commercial PGs are produced via chemical synthesis, which involves many reaction and purification steps, resulting in high production costs. In contrast, PG bioproduction using transgenic diatoms, which accumulate high amounts of C20 fatty acids (PG precursors), can be an eco-friendly alternative. However, PG production in microalgae remains limited. In this study, we examined the effect of newly identified diatom-derived cox genes on PG production in Phaeodactylum tricornutum, a model diatom that accumulates substantial amounts of eicosapentaenoic acid and arachidonic acid. Two cox genes from Skeletonema marinoi and Thalassiosira rotula were heterologously expressed, and PG production was detected only in the transformant expressing T. rotula-derived cox. The Trcox transformant exhibited a relative PG production level of 1.8, whereas the Smcox transformant produced no detectable PGs. The PG profile of the Trcox transformant consisted of 22.0% PGD2, 30.0% PGE2, 2.2% PGF2, 19.3% PGD3, 19.7% PGE3, and 6.9% PGF3
. To the best of our knowledge, this is the first report to demonstrate the PGs production in transgenic P. tricornutum with the diatom-derived cox gene. These and the findings from our results may contribute to the further application of diatoms in the production of industrial PGs.
Cyclooxygenase, Microalgae, Polyunsaturated fatty acid, Prostaglandins
| Filename | Description |
|---|---|
| R1-CE-8219-20251125165531.docx | --- |
Bowler, C., Allen, A. E., Badger, J. H., Grimwood, J.,
Jabbari, K., Kuo, A., & Grigoriev, I. V. (2008). The phaeodactylum genome reveals the evolutionary history of
diatom genomes. Nature, 456 (7219), 239–244. https://doi.org/https://doi.org/10.1038/nature07410
Cercado,
A. P., Ballesteros, F. C., & Capareda, S. C. (2018). Biodiesel from three
microalgae transesterification processes using different homogeneous catalysts.
International Journal of Technology, 9 (4), 645–651. https://doi.org/https://doi.org/10.14716/ijtech.v9i4.1145
Coulthard, G., Erb, W., & Aggarwal, V. K. (2012). Stereo-controlled organocatalytic synthesis of prostaglandin pgf
in seven steps. Nature, 489 (7415), 278–281. https://doi.org/10.1038/nature11411
Cui,
Y., Thomas-Hall, S. R., & Schenk, P. M. (2019). Phaeodactylum tricornutum
microalgae as a rich source of omega-3 oil. Food Chemistry, 297, 124937. https://doi.org/10.1016/j.foodchem.2019.06.004
Di-Dato,
V., Barbarinaldi, R., Amato, A., Di Costanzo, F., Fontanarosa, C., Perna, A.,
Amoresano, A., Esposito, F., Cutignano, A., Ianora, A., & Romano, G.
(2020). Variation in prostaglandin metabolism during growth of the diatom
thalassiosira rotula. Scientific Reports, 10, 5374.
https://doi.org/https://doi.org/10.1038/s41598-020-61967-3
Di-Dato,
V., Di Costanzo, F., Barbarinaldi, R., Perna, A., Ianora, A., & Romano, G.
(2019). Unveiling the presence of biosynthetic pathways for bioactive compounds
in the thalassiosira rotula transcriptome. Scientific Reports, 9, 9893. https://doi.org/10.1038/s41598-019-46276-8
Di-Dato,
V., Orefice, I., Amato, A., Fontanarosa, C., Amoresano, A., Cutignano, A.,
Ianora, A., & Romano, G. (2017). Animal-like prostaglandins in marine
microalgae. The ISME Journal, 11 (7), 1722–1726. https://doi.org/10.1038/ismej.2017.27
Guo, W., Weng, Y., Ma, W., Chang, C., Gao, Y., Huang, X.,
& Zhang, F. (2024). Improving
lipid content in the diatom phaeodactylum tricornutum by the knockdown of the
enoyl-coa hydratase using crispr interference. Current Issues in Molecular
Biology, 46 (10), 10923–10933. https://doi.org/10.3390/cimb46100649
Kanamoto, H., Takemura, M., & Ohyama, K. (2011). Identification of a cyclooxygenase gene from the red alga
gracilaria vermiculophylla and bioconversion of arachidonic acid to pgf in
engineered escherichia coli. Applied Microbiology and Biotechnology, 91 (4),
1121–1129. https://doi.org/10.1007/s00253-011-3349-5
Kang, K. H., Qian, Z. J., Ryu, B., & Kim, S. K.
(2011). Characterization
of growth and protein contents from microalgae navicula incerta with the
investigation of antioxidant activity of enzymatic hydrolysates. Food Science
and Biotechnology, 20 (1), 183–191. https://doi.org/10.1007/s10068-011-0025-6
Kartika, R., Ritonga, A. H., Sulastri, L., Nurliana, S.,
Irawan, D., & Simanjuntak, P. (2023). Biosorption
of hexavalent chromium cr(vi) using microalgae scenedesmus sp as environmental
bioindicator. International Journal of Technology, 14 (4), 791–799. https://doi.org/10.14716/ijtech.v14i4.5188
Kim, G., Lee, S., Karin, E. L., Kim, H., Moriwaki, Y.,
Ovchinnikov, S., Steinegger, M., & Mirdita, M.
(2025). Easy and accurate protein structure prediction using colabfold. Nature
Protocols, 20 (3), 620–642. https://doi.org/https://doi.org/10.1038/s41596-024-01060-5
Konopka,
C. K., Glanzner, W. G., Rigo, M. L., Rovani, M. T., Comim, F. V., Gon ?calves,
P. B. D., Morais, E. N., Antoniazzi, A. Q., Mello, C. F., & Cruz, I. B. M.
(2015). Responsivity to pge2 labor induction involves concomitant differential
prostaglandin e receptor gene expression in cervix and myometrium. Genetics and
Molecular Research, 14 (3), 10877–10887. https://doi.org/https://doi.org/10.4238/2015.September.9.25
Maeda, Y., Tsuru, Y., Matsumoto, N., Nonoyama, T.,
Yoshino, T., Matsumoto, M., & Tanaka, T. (2021). Prostaglandin production by the microalga with heterologous
expression of cyclooxygenase. Biotechnology and Bioengineering, 118 (7),
2734–2743. https://doi.org/10.1002/bit.27792
Marcolina, A., Vu, K., & Annaswamy, T. M. (2021). Lumbar spinal stenosis and potential management with prostaglandin
e1 analogs. American Journal of Physical Medicine and Rehabilitation, 100 (3),
297–302. https://doi.org/10.1097/PHM.0000000000001620
Miller,
S. B. (2006). Prostaglandins in health and disease: An overview. Seminars in
Arthritis and Rheumatism, 36 (1), 37–49. https://doi.org/https://doi.org/10.1016/j.semarthrit.2006.03.005
Mirdita,
M., Sch ?utze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M.
(2022). Colabfold: Making protein folding accessible to all. Nature Methods, 19
(6), 679–682. https://doi.org/https://doi.org/10.1038/s41592-022-01488-1
Mohamed,
M. E., & Lazarus, C. M. (2014). Production of prostaglandins in transgenic
arabidopsis thaliana. Phytochemistry, 102, 74–79. https://doi.org/10.1016/j.phytochem.2014.02.013
Peng, H., & Chen, F. E. (2017). Recent advances in asymmetric total synthesis of prostaglandins. Organic
and Biomolecular Chemistry, 15 (30), 6281–6301. https://doi.org/10.1039/C7OB01341H
Prihantini, N. B., Maulana, F., Wardhana, W., Takarina,
N. D., Nurdin, E., Handayani, S., Nasruddin, & Haryani, G. S. (2021). Wild mixed culture microalgae biomass from ui agathis small lake
harvested directly using ultrasound harvesting module as biofuel raw material.
International Journal of Technology, 12 (5), 1081–1090. https://doi.org/10.14716/ijtech.v12i5.5226
Ricciotti,
E., & FitzGerald, G. A. (2011). Prostaglandins and inflammation.
Arteriosclerosis, Thrombosis, and Vascular Biology, 31 (5), 986–1000. https://doi.org/10.1161/ATVBAHA.110.207449
Rouzer, C. A., & Marnett, L. J. (2020). Structural and chemical biology of the interaction of
cyclooxygenase with substrates and non-steroidal anti-inflammatory drugs.
Chemical Reviews, 120 (15), 7592–7641. https://doi.org/10.1021/acs.chemrev.0c00215
Ruan,
Y. C., Zhou, W., & Chan, H. C. (2011). Regulation of smooth muscle
contraction by the epithelium: Role of prostaglandins. Physiology, 26 (3),
156–170. https://doi.org/10.1152/physiol.00036.2010
Seibold, S. A., Ball, T., Hsi, L. C., Mills, D. A.,
Abeysinghe, R. D., Micielli, R., Rieke, C. J., Culier, R. I., & Smith, W.
L. (2003). Histidine 386
and its role in cyclooxygenase and peroxidase catalysis by
prostaglandin-endoperoxide h synthases. Journal of Biological Chemistry, 278
(46), 46163–46170. https://doi.org/https://doi.org/10.1074/jbc.M306319200
Seo, M. J., & Oh, D. K. (2017). Prostaglandin synthases: Molecular characterization and involvement
in prostaglandin biosynthesis. Progress in Lipid Research, 66, 50–68. https://doi.org/10.1016/j.plipres.2017.04.003
Siaut, M., Heijde, M., Mangogna, M., Montsant, A.,
Coesel, S., Allen, A., Manfredonia, A., Falciatore, A., & Bowler, C.
(2007). Molecular toolbox for studying diatom biology in phaeodactylum
tricornutum. Gene, 406 (1–2), 23–35. https://doi.org/10.1016/j.gene.2007.05.022
Swan,
C. E., & Breyer, R. M. (2011). Prostaglandin e2 modulation of blood
pressure homeostasis: Studies in rodent models. Prostaglandins, Other Lipid
Mediators, 96 (1–4), 10–13. https://doi.org/10.1016/j.prostaglandins.2011.07.001
Takemura, M., Kanamoto, H., Nagaya, S., & Ohyama, K.
(2013). Bioproduction
of prostaglandins in a transgenic liverwort, marchantia polymorpha. Transgenic
Research, 22 (5), 905–911. https://doi.org/https://doi.org/10.1007/s11248-013-9699-2
Varvas,
K., Kasvandik, S., Hansen, K., J ?arving, I., Morell, I., & Samel, N.
(2013). Structural and catalytic insights into the algal prostaglandin h
synthase reveal atypical features of the first non-animal cyclooxygenase.
Biochimica et Biophysica Acta, 1831 (4), 863–871. https://doi.org/https://doi.org/10.1016/j.bbalip.2012.11.010
Vlachakis, D., Pavlopoulou, A., Kazazi, D., &
Kossida, S. (2013). Unraveling
microalgal molecular interactions using evolutionary and structural
bioinformatics. Gene, 528 (2), 109–119. https://doi.org/10.1016/j.gene.2013.07.039
Xin,
Q., Yu, G., Feng, I., & Dean, J. (2023). Chromatin remodeling of
prostaglandin signaling in smooth muscle enables mouse embryo passage through
the female reproductive tract. Developmental Cell, 58 (18), 1716–1732.e8. https://doi.org/10.1016/j.devcel.2023.08.025
Yang, Y. H., Du, L., Hosokawa, M., Miyashita, K., Kokubun, Y., Arai, H., & Taroda, H. (2017). Fatty acid and lipid class composition of the microalga phaeodactylum tricornutum. Journal of Oleo Science, 66 (4), 363–368. https://doi.org/10.5650/jos.ess16205
Yu, R., Xiao, L., Zhao, G., Christman, J. W., & van Breemen, R. B. (2011). Competitive enzymatic interactions determine the relative amounts of prostaglandins e2 and d2. The Journal of Pharmacology and Experimental Therapeutics, 339 (2), 716–725. https://doi.org/10.1124/jpet.111.185405