• International Journal of Technology (IJTech)
  • Vol 17, No 1 (2026)

Detection of Weld Defects in Steel Pipes Using Coaxial Magnetic Induction Sensor: Numerical Simulation and Experimental Validation

Detection of Weld Defects in Steel Pipes Using Coaxial Magnetic Induction Sensor: Numerical Simulation and Experimental Validation

Title:

Detection of Weld Defects in Steel Pipes Using Coaxial Magnetic Induction Sensor: Numerical Simulation and Experimental Validation

Kurnia Nugraha, Winarto Winarto, Didied Haryono, Imamul Muttakin, Amalia Sholehah, Agusutrisno M. Nurut, Rizki Kurniawan, Nazwa Raudya Tuzahra

Corresponding email:


Cite this article as:
Nugraha, K., Winarto, W., Haryono, D., Muttakin, I., Sholehah, A., Agussutrisno, Kurniawan, R., & Tuzahra, N. R. (2026). Detection of weld defects in steel pipes using coaxial magnetic induction sensor: Numerical simulation and experimental validation. International Journal of Technology, 17 (1), 94–105


12
Downloads
Kurnia Nugraha 1. Department of Metallurgical and Material Engineering, Faculty of Engineering, Universitas Indonesia, Depok 16424, Indonesia 2. Department of Mechanical Engineering, Faculty of Engineering, Univers
Winarto Winarto Department of Metallurgical Engineering, Faculty of Engineering, Universitas Sultan Ageng Tirtayasa, Cilegon 42434, Indonesia
Didied Haryono 1. Department of Metallurgical Engineering, Faculty of Engineering, Universitas Sultan Ageng Tirtayasa, Cilegon 42434, Indonesia 2. Laboratorium Advanced Materials and Tomography, Engineering Faculty
Imamul Muttakin 1. Department of Electrical Engineering, Faculty of Engineering, Universitas Sultan Ageng Tirtayasa, Cilegon, 42434, Indonesia 2. Laboratorium Advanced Materials and Tomography, Engineering Faculty,
Amalia Sholehah 1. Department of Metallurgical Engineering, Faculty of Engineering, Universitas Sultan Ageng Tirtayasa, Cilegon 42434, Indonesia 2. Laboratorium Advanced Materials and Tomography, Engineering Faculty
Agusutrisno M. Nurut 1. Department of Electrical Engineering, Faculty of Engineering, Universitas Sultan Ageng Tirtayasa, Cilegon, 42434, Indonesia 2. Laboratorium Advanced Materials and Tomography, Engineering Faculty,
Rizki Kurniawan Department of Mechanical Engineering, Faculty of Engineering, Universitas Sultan Ageng Tirtayasa, Cilegon, 42434, Indonesia
Nazwa Raudya Tuzahra Department of Metallurgical Engineering, Faculty of Engineering, Universitas Sultan Ageng Tirtayasa, Cilegon 42434, Indonesia
Email to Corresponding Author

Abstract
<p>Detection of Weld Defects in Steel Pipes Using Coaxial Magnetic Induction Sensor: Numerical Simulation and Experimental Validation</p>

Weld defects in high-pressure piping systems are critical initiation points for leakage, rupture, or explosion, leading to severe safety hazards and economic losses. Therefore, reliable and early detection methods are essential for ensuring the integrity of industrial pipelines. Radiographic testing (RT) is widely used because of its ability to produce detailed internal images. However, RT relies on hazardous ionizing radiation, requires certified operators, and incurs high operational costs. These limitations drive the need for safer and more efficient alternatives. Magnetic induction tomography (MIT) is a radiation-free, non-contact, and operationally simple method; however, its insufficient spatial resolution and sensitivity, especially for sub-millimeter flaws, limit its industrial deployment. To address these challenges, a coaxial magnetic induction (CMI) sensor specifically engineered for weld-defect detection is developed and evaluated in this study. The sensor employs a concentric transmitter-receiver configuration that enhances electromagnetic coupling, improves spatial resolution, and suppresses external noise compared with conventional sensing architectures. In this report, we employ controlled laboratory experiments, impedance-based signal analysis, and principal component analysis (PCA) to systematically investigate the sensor’s response to defects. Experiments conducted on steel plates and welded pipes containing 0.5-2.0 artificial defect revealed a clear proportional relationship between the defect size and the induced-voltage variation. Statistical validation confirmed excellent measurement repeatability (CV < 2.5%) and significant separation between the defective and nondefective groups (p < 0.01). These results confirm that the proposed CMI sensor addresses the critical limitations of conventional MIT systems and offers a safer, radiation-free, and cost-efficient approach to weld-defect detection, thereby meeting the industrial safety requirements highlighted at the outset.

Coaxial sensor; Magnetic induction tomography; Non-destructive testing; Steel pipes; Weld defects

Supplementary Material
FilenameDescription
R1-MME-8211-20251124231503.png Figure 1 Fundamental principles of the CMI sensor
R1-MME-8211-20251124231540.png Figure 2 Coaxial magnetic induction (CMI) sensor model
R1-MME-8211-20251124231626.png Figure 3 Portable testing device used in the experimental stage
R1-MME-8211-20251124231733.png Figure 4.a Receiver coil voltage vs frequency (constant resistance)
R1-MME-8211-20251124231819.png Figure 4.b Receiver coil voltage vs frequency (constant transmitter voltage)
R1-MME-8211-20251124231855.png Figure 5 Receiver coil voltage on the non-defective and defective specimens
R1-MME-8211-20251124231958.png Figure 6.a Impedance values at 8 Hz–32 kHz on plate and pipe steel (Plate steel)
R1-MME-8211-20251124232039.png Figure 6.b Impedance values at 8 Hz–32 kHz on plate and pipe steel (Pipe steel)
R1-MME-8211-20251124232127.png Figure_7_a1_2D PCA (PC1_PC2_Plate)
R1-MME-8211-20251124232216.png Figure_7_a2_2D PCA (PC1_PC3_Plate)
R1-MME-8211-20251124232254.png Figure_7_a3_2D PCA (PC2_PC3_Plate)
R1-MME-8211-20251124232328.png Figure_7_b1_2D PCA (PC1_PC2_Pipe)
R1-MME-8211-20251124232356.png Figure_7_b2_2D PCA (PC1_PC3_Pipe)
R1-MME-8211-20251124232425.png Figure_7_b3_2D PCA (PC2_PC3_Pipe)
R1-MME-8211-20251124232456.png Figure_8a_3D PCA (Plate)
R1-MME-8211-20251124232526.png Figure_8b_3D PCA (Pipe)
References

Al Huda, M., Haryono, D., Nugraha, H., Fitriani, A. N., & Taruno, W. P. (2020). Characterization of magnetic induction coil sensor for void detection in steel plate. 2020 International Conference on Smart Technology and Applications (ICoSTA). https://doi.org/10.1109/ICoSTA48221.2020.1570610828

Cao, Z., Ye, B., Cao, H., Zou, Y., Zhu, Z., & Xing, H. (2024). Biplane enhancement coil for magnetic induction tomography of cerebral hemorrhage. Biosensors, 14 (5), 217. https://doi.org/10.3390/bios14050217

Chen, J., Ke, L., Du, Q., Zu, W., & Ding, X. (2019). Sector sensor array technique for high conductivity materials imaging in magnetic induction tomography. Biomedical Engineering Online, 18, 1–16. https://doi.org/10.1186/s12938-019-0734-2

Deepak, J. R., Raja, V. K. B., Srikanth, D., Surendran, H., & Nickolas, M. M. (2021). Nondestructive testing techniques for low carbon steel welded joints: A review and experimental study. Materials Today: Proceedings, 44, 3732–3737. https://doi.org/10.1016/j.matpr.2020.11.578

Dingley, G., & Soleimani, M. (2021). Multi-frequency magnetic induction tomography system and algorithm for imaging metallic objects. Sensors, 21 (11), 3671. https://doi.org/10.3390/s21113671

Feldkamp, J. R. (2017). Inversion of an inductive loss convolution integral for conductivity imaging. Progress in Electromagnetics Research B, 74, 93–107. https://doi.org/10.2528/PIERB17021413

Grand View Research. (2024, March). Steel pipes tubes market (2024 - 2030) [Accessed March 2024].

Griffiths, H. (2001). Magnetic induction tomography. Measurement Science and Technology, 12 (8), 1126. https://doi.org/10.1088/0957-0233/12/8/319

Guan, K., Zhou, Y., Wang, L., Chang, B., & Du, D. (2025). A self-configuring transformer segmentation method for welding radiographic defect detection in steel pipes. Nondestructive Testing and Evaluation, 1–22. https://doi.org/10.1080/10589759.2025.2491739

Guilizzoni, R., Finch, G., & Harmon, S. (2019). Subsurface corrosion detection in industrial steel structures. IEEE Magnetics Letters, 10, 1–5.

Gupta, M., Khan, M. A., Butola, R., & Singari, R. M. (2022). Advances in applications of nondestructive testing: A review. Advances in Materials and Processing Technologies, 8 (2), 2286–2307. https://doi.org/10.1080/2374068X.2021.1909332

Haryono, D., Suandana, I. M. R. F., Sholehah, A., Nugraha, K., & Fadlil. (2024). Sensor arus eddy koaksial (coaxial eddy current sensor) [Indonesian Intellectual Property Database]. https://pdki -indonesia.dgip.go.id/detail/e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

Hofmann, A., Klein, M., Rueter, D., & Sauer, A. (2022). A deep residual neural network for image reconstruction in biomedical 3d magnetic induction tomography. Sensors, 22 (20). https://doi.org/10.3390/s22207925

Ishak, N., Lee, C. K., & Muji, S. (2021). Simulation magnetic induction tomography for agarwood using comsol multiphysics. International Journal of Engineering and Advanced Technology, 10, 67–71. https://doi.org/http://www.doi.org/10.35940/ijeat.C2174.0210321

Klein, M., Erni, D., & Rueter, D. (2020). Three-dimensional magnetic induction tomography: Improved performance for center regions inside low conductive and voluminous body. Sensors, 20 (5), 1306. https://doi.org/https://doi.org/10.3390/s21227725

Kou, S. (2003). Welding metallurgy. John Wiley & Sons.

Ma, L. (2014). Magnetic induction tomography for non-destructive evaluation and process tomography [Doctoral dissertation, University of Bath].

Ma, L., & Soleimani, M. (2017). Magnetic induction tomography methods and applications: A review. Measurement Science and Technology, 28 (7), 072001. https://doi.org/10.1088/1361-6501/aa7107

Ma, L., Spagnul, S., & Soleimani, M. (2017). Metal solidification imaging by magnetic induction tomography. Scientific Reports, 7 (1), 14502. https://doi.org/10.1038/s41598-017-15131-z

Mansor, M. s. B., Zakaria, Z., Balkhis, I., Rahim, R. A., & Sahib, M. F. A. (2015). Magnetic induction tomography: A brief review. Jurnal Teknologi, 73 (3), 91–95. https://doi.org/10.11113/jt.v73.4252

Muttakin, I., & Soleimani, M. (2020). Magnetic induction tomography spectroscopy for metallic materials characterization. Materials, 13 (11), 2639. https://doi.org/10.3390/ma13112639

Muttakin, I., Wondrak, T., & Soleimani, M. (2020). Magnetic induction tomography sensors for visualization of liquid metal flow shape. IEEE Sensors Letters, 4 (7), 1–4. https://doi.org/10.1109/LSENS.2020.3000292

Noorsaman, A., Amrializzia, D., Zulfikri, H., Revitasari, R., & Isambert, A. (2023). Machine learning algorithms for failure prediction model and operational reliability of onshore gas transmission pipelines. International Journal of Technology, 14 (3), 680–689. https://doi.org/10.14716/ijtech.v14i3.6287

Nugraha, K., Winarto, W., Haryono, D., Sholehah, A., & Nugraha, H. (2025). Material characterization using magnetic induction based measurement technique at low-frequency range. Journal of Physics: Conference Series, 2980 (1), 012033. https://doi.org/10.1088/1742-6596/2980/1/012033

Nugraha, K., Winarto, W., Haryono, D., Sholehah, A., Widada, W., Nugraha, H., Sediyatmo, M., Muttakin, I., & Ramadhan, R. (2026). Simulation of weld defect detection in steel pipes using magnetic induction tomography sensor modeling. Proceedings of the International Conference on Smart and Advanced Manufacturing. https://doi.org/10.1007/978-981-96-9740-3_17

Pipeline and Hazardous Materials Safety Administration. (2022). Pipeline incident 20 year trends. https://www.phmsa.dot.gov/data-and-statistics/pipeline/pipeline-incident-20-year-trends

Piscitelli, G., Su, Z., Udpa, L., & Tamburrino, A. (2023). Magnetic induction tomography via the monotonicity principle. Journal of Physics: Conference Series, 2444 (1), 012005. https://doi.org/10.1088/1742-6596/2444/1/012005

Puji, M. N., Prajitno, P., & Taruno, W. P. (2024). Design of volumetric magnetic induction tomography system using comsol simulation. 2024 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET). https://doi.org/10.1109/ICRAMET62801.2024.10809219

Ratajczak, M., & Wondrak, T. (2020). Analysis, design and optimization of compact ultra-high sensitivity coreless induction coil sensors. Measurement Science and Technology, 31 (6), 065902. https://doi.org/10.1088/1361-6501/ab7166

Schledewitz, T., Hofmann, A., Fehr, M., Sauer, A., & Rueter, D. (2024). Hybrid method for image reconstruction in magnetic induction tomography: Combination of the neural network with an iterative analytical algorithm. Current Directions in Biomedical Engineering. https://doi.org/10.1515/cdbme-2024-2134

Schledewitz, T., Klein, M., & Rueter, D. (2023). Magnetic induction tomography: Separation of the ill-posed and non-linear inverse problem into a series of isolated and less demanding subproblems. Sensors, 23 (3). https://doi.org/10.3390/s23031059

Shaloo, M., Schnall, M., Klein, T., Huber, N., & Reitinger, B. (2022). A review of non-destructive testing (ndt) techniques for defect detection: Application to fusion welding and future wire arc additive manufacturing processes. Materials, 15 (10), 3697. https://doi.org/10.3390/ma15103697

Tan, C., Chen, Y., Wu, Y., Xiao, Z., & Dong, F. (2021). A modular magnetic induction tomography system for low-conductivity medium imaging. IEEE Transactions on Instrumentation and Measurement, 70, 1–8. https://doi.org/10.1109/TIM.2021.3073439

Wei, H. Y., Ma, L., & Soleimani, M. (2012). Volumetric magnetic induction tomography. Measurement Science and Technology, 23 (5), 055401.

Wei, H. Y., & Soleimani, M. (2012). A magnetic induction tomography system for prospective industrial processing applications. Chinese Journal of Chemical Engineering, 20 (2), 406–410. https://doi.org/10.1016/S1004-9541(12)60404-2

Xiao, Z., Tan, C., & Dong, F. (2019). Three-dimensional hemorrhage imaging by cambered magnetic induction tomography. IEEE Transactions on Instrumentation and Measurement, 68 (7), 2460–2468. https://doi.org/10.1109/TIM.2019.2900779

Yang, D., Liu, J., Wang, Y., Xu, B., & Wang, X. (2021). Application of generative adversarial network in image reconstruction of magnetic induction tomography. Sensors, 21 (11), 3869. https://doi.org/10.3390/s21113869

Zhu, Z., Tan, C., Chen, Y., & Dong, F. (2023). Hemorrhage detection by magnetic induction tomography with helmholtz coil. 42nd Chinese Control Conference. https://doi.org/10.23919/CCC58697.2023.10240606