Published at : 28 Jan 2026
Volume : IJtech
Vol 17, No 1 (2026)
DOI : https://doi.org/10.14716/ijtech.v17i1.8203
| Shinnosuke Dowaki | Graduate School of Engineering, Department of Biomedical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan |
| Meito Fukada | Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan |
| Taiji Okano | Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan |
| Yosuke Tanaka | Graduate School of Engineering, Department of Biomedical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan |
Shrimp farming is widespread in Indonesia, and the risk of mass mortality due to disease outbreaks remains a significant concern. Recent research aimed at developing disease-resistant shrimp through genome editing has made remarkable progress. Additionally, the need for techniques that can efficiently isolate gene-edited cells is increasing. Currently, conventional cell sorters cannot be applied to millimeter-scale cells, such as egg cells; as a result, most isolation operations are still manual. To address this issue, we developed a millifluidics-based sorting system that selectively isolates only the fluorescently stained target cells from a population of large-sized cells. The sorting employs computer-based image processing, achieving high-purity sorting at a rate of 1.6 cells/s. This study aimed to improve the sorting rate while maintaining high purity by integrating the existing cell detection method with analog electronic fluorescence detection. As a result, a sorting rate of 2.85 cells/s was achieved even under non-optimized conditions, representing 1.8-fold increase in the sorting rate compared with that in a previous study. Because the cell detection speed is expected to be >10 times faster than previously described methods under optimized conditions, a sorting rate of >10 cells/s can be achieved in the future by further improving the detection circuit. This result represents a crucial step toward the practical implementation of high-speed and precision sorting technology for large cells.
Analog electronic circuit; Cell sorter; Fluorescence detection; Large-cell sorting; Real-time signal detection
Azwani,
W., Cahya, D. A., Gazali, A. D., Karima, A. P., Oktavya, G., Istiqomah, R. N.,
Bustami, A., Rizqy, F. A., Katili, P. A., Purnama, U., & Djer, M. M.
(2025). Biomaterial characterization
of decellularized human amniotic membrane seeded with fetal human cardiac
fibroblasts for cardiac tissue engineering. International Journal of
Technology, 16 (5), 1651–1664. https://doi.org/10.14716/ijtech.v16i5.7808
Capek,
D., Safroshkin, M., Morales-Navarrete, H., Toulany, N., Arutyunov, G.,
Kurzbach, A., Bihler, J., Hagauer, J., Kick, S., Jones, F., Jordan, B., &
Muller, P. (2023). Embryonet: Using deep learning to link embryonic phenotypes
to signaling pathways. Nature Methods, 20, 815–823.
Chen,
D., Xu, L., Xuan, M., Chu, Q., & Xue, C. (2024). Unveiling the functional
roles of patient-derived tumour organoids in assessing the tumour
microenvironment and immunotherapy. Clinical and Translational Medicine, 14
(9), e1802. https://doi.org/10.1002/ctm2.180
Cotta,
G. C., Santos, R. C. T. D., Costa, G. M. C., & Lacerda, S. M. S. N. (2024).
Reporter alleles in hipscs: Visual cues on development and disease.
International Journal of Molecular Sciences, 25 (20), 11009. https://doi.org/10.3390/ijms252011009
Dinca,
M. A., Ardeleanu, M. N., Puchianu, D. C., & Predusca, G. (2025).
Preliminary study on sensor-based detection of an adherent cell’s
pre-detachment moment in a mpwm microfluidic extraction system. Sensors, 25
(9), 2726. https://doi.org/10.3390/s25092726
Diouf,
A., Sadak, F., Gerena, E., Mannioui, A., Zizioli, D., Fassi, I., Boudaoud, M.,
Legnani, G., & Haliyo, S. (2024). Robotic sorting of zebrafish embryos.
Journal of Micro and Bio Robotics, 20, 3.
Fukada,
M., Saito, K., & Okano, T. (2021). Capsule vending machine-like device for
cell release with equal intervals. Proceedings of MicroTAS 2021, 243–244.
Gao,
G., Shao, T., Li, T., & Wang, S. (2025). Harnessing optical forces with
advanced nanophotonic structures: Principles and applications. Discover Nano,
20, 76.
Han, X., Zhou, Z., Fei, L., Sun, H., Wang, R., Chen, Y.,
Chen, H., Wang, J., Tang, H., Ge, W., Zhou, Y., Ye, F., Jiang, M., Wu, J.,
Xiao, Y., Jia, X., Zhang, T., Ma, X., Zhang, Q., . . .Guo, G. (2020). Construction of a human cell landscape at
single-cell level. Nature, 581, 303–309.
Hanninen,
A. (2024). Vibrational imaging of metabolites for improved microbial cell
strains. Journal of Biomedical Optics, 29 (S2), S22711. https://doi.org/10.1117/1.JBO.29.S2.S22711
He,
J., Cai, S., Feng, H., Cai, B., Lin, L., Mai, Y., Fan, Y., Zhu, A., Huang, H.,
Shi, J., Li, D., Wei, Y., Li, Y., Zhao, Y., Pan, Y., Liu, H., Mo, X., He, X.,
Cao, S., . . . Chen, J. (2020). Single-cell analysis reveals bronchoalveolar
epithelial dysfunction in covid-19 patients. Protein and Cell, 11 (9), 680–687.
https://doi.org/10.1007/s13238-020-00752-4
Isozaki, A., Mikami, H., Tezuka, H., Matsumura, H.,
Huang, K., Akamine, M., Hiramatsu, K., Iino, T., Ito, T., Karakawa, H., Kasai,
Y., Li, Y., Nakagawa, Y., Ohnuki, S., Ota, T., Qian, Y., Sakuma, S., Sekiya,
T., Shirasaki, Y., . . . Goda,
K. (2020). Intelligent image-activated cell sorting 2.0. Lab on a Chip, 20
(13), 2263–2273. https://doi.org/10.1039/d0lc00080a
Jones,
R. A., Renshaw, M. J., Barry, D. J., & Smith, J. C. (2023). Automated
staging of zebrafish embryos using machine learning. Wellcome Open Research, 7,
275.
Li, P., Li, X., Wang, F., Gao, M., Bai, Y., Zhang, Z.,
& Wei, Z. (2024). Enrichment of
prime-edited mammalian cells with surrogate puror reporters. International
Journal of Biological Macromolecules, 271, 132474. https://doi.org/10.12688/wellcomeopenres.18313.3
Liao, M., Liu, Y., Yuan, J., Wen, Y., Xu, G., Zhao, J.,
Cheng, L., Li, J., Wang, X., Wang, F., Liu, L., Amit, I., Zhang, S., &
Zhang, Z. (2020). Single-cell
landscape of bronchoalveolar immune cells in patients with covid-19. Nature
Medicine, 26, 842–844. https://doi.org/10.1038/s41591-020-0901-9
Liu, J., Zhi, X., Fang, X., Li, W., Zhao, W., Liu, M.,
Lai, E., Fang, W., Wang, J., Zheng, Y., Zou, J., Fu, Q., & Cui, W. (2025). The application of microfluidic chips in primary urological
cancer: Recent advances and future perspectives. Smart Medicine, 1, 70010. https://doi.org/10.1002/smmd.70010
Lu,
N., Tay, H. M., Petchakup, C., He, L., Gong, L., Maw, K. K., Leong, S. Y., Lok,
W. W., Ong, H. B., Guo, R., Li, K. H. H., & Hou, H. W. (2023). Label-free
microfluidic cell sorting and detection for rapid blood analysis. Lab on a
Chip, 23, 1226–1257. https://doi.org/10.1039/D2LC00904H
Lyu, Y., Yuan, X., Glidle, A., & Fu, Y. (2020). Automated raman based cell sorting with 3d microfluidics. Lab on a
Chip, 20 (22), 4235–4245. https://doi.org/10.1039/D0LC00679C
Naderi,
A. M., Bu, H., Su, J., Huang, M. H., Vo, K., Trigo Torres, R. S., Chiao, J. C.,
Lee, J., Lau, M. P. H., Xu, X., & Cao, H. (2021). Deep learning-based
framework for cardiac function assessment in embryonic zebrafish from heart
beating videos. Computers in Biology and Medicine, 135, 104565. https://doi.org/10.1016/j.compbiomed.2021.104565
Napitupulu, M., Zai, F., Lestari, S. W., Witjaksono, L.,
Drakel, Z., Bhavnani, D., Yunihastuti, E., Pratama, G., Kodariah, R., &
Kusmardi, K. (2025). Oxidative
stress, dna fragmentation and caspase-3 regulation in hiv-1 positive men: A
study of sperm preparation. International Journal of Technology, 16 (2),
639–651. https://doi.org/10.14716/ijtech.v16i2.6420
Nguyen,
T. D., Chooi, W. H., Jeon, H., Chen, J., Tan, J., Roxby, D. N., Lee, C. Y. P.,
Ng, S. Y., Chew, S. Y., & Han, J. (2024). Label-free and high-throughput
removal of residual undifferentiated cells from ipsc-derived spinal cord
progenitor cells. Stem Cells Translational Medicine, 13 (4), 387–398. https://doi.org/10.1093/stcltm/szae002
Nie, X., Luo, Y., Shen, P., Han, C., Yu, D., & Xing,
X. (2021). High-throughput
dielectrophoretic cell sorting assisted by cell sliding on scalable electrode
tracks made of conducting-pdms. Sensors and Actuators B: Chemical, 327, 128873.
Nitta,
N., Iino, T., Isozaki, A., Yamagishi, M., Kitahama, Y., Sakuma, S., Suzuki, Y.,
Tezuka, H., Oikawa, M., Arai, F., Asai, T., Deng, D., Fukuzawa, H., Hase, M.,
Hasunuma, T., Hayakawa, T., Hiraki, K., Hiramatsu, K., Hoshino, Y., . . . Goda,
K. (2020). Raman image-activated cell sorting. Nature Communications, 11 (1),
3452. https://doi.org/10.1038/s41467-020-17285-3
Nurhayati, R. W., Lubis, D. S. H., Pratama, G., Agustina,
E., Khoiriyah, Z., Alawiyah, K., & Pawitan, J. A. (2021). The effects of static and dynamic culture systems on cell proliferation
and conditioned media of umbilical cord-derived mesenchymal stem cells. International
Journal of Technology, 12 (6). https://doi.org/10.14716/ijtech.v12i6.5172
Park,
S., Min, C. H., Choi, E., Choi, J. S., Park, K., Han, S., Choi, W., Jang, H.
J., Cho, K. O., & Kim, M. (2025). Long-term tracking of neural and
oligodendroglial development in large-scale human cerebral organoids by
noninvasive volumetric imaging. Scientific Reports, 15, 2536. https://doi.org/10.1038/s41598-025-85455-8
Pragiwaksana, A., Irsyad, M., Nadhif, M., Muradi, A.,
Jasirwan, C. O. M., Juniantito, V., Syaiful, R. A., & Antarianto, R. D.
(2024). Maintenance
of hipsc-derived hepatocytes in a perfusion bioreactor integrated with stem
cell hepatic intuitive apparatus. International Journal
of Technology, 15 (5). https://doi.org/10.14716/ijtech.v15i5.6088
Qiang, Y., Xu, M., Pochron, M. P., Jupelli, M., &
Dao, M. (2024). A framework
of computer vision-enhanced microfluidic approach for automated assessment of
the transient sickling kinetics in sickle red blood cells. Frontiers in
Physics, 12, 1331047. https://doi.org/10.3389/fphy.2024.1331047
Raffaele,
I., Cipriano, G. L., Anchesi, I., Oddo, S., & Silvestro, S. (2025).
Crispr/cas9 and ipsc-based therapeutic approaches in alzheimer’s disease. Antioxidants, 14 (7), 781.
Saito, K., Ota, Y., Tourlousse, D. M., Matsukura, S.,
Fujitani, H., Morita, M., Tsuneda, S., & Noda, N. (2021). Microdroplet-based system for culturing of environmental
microorganisms using fnap-sort. Scientific Reports, 11 (1), 9506. https://doi.org/10.1038/s41598-021-88971-6
Shen, M. J., Olsthoorn, R. C. L., Zeng, Y., Bakkum, T.,
Kros, A., & Boyle, A. L. (2021). Magnetic-activated
cell sorting using coiled-coil peptides: An alternative strategy for isolating
cells with high efficiency and specificity. ACS Applied Materials and
Interfaces, 13 (10), 11621–11630. https://doi.org/10.1021/acsami.0c22185
Sibuea, C. V., Pawitan, J., Antarianto, R., Jasirwan, C.
O. M., Sianipar, I. R., Luviah, E., Nurhayati, R. W., Mubarok, W., Fahdia, N.,
& Mazfufah, M. (2020). 3d
co-culture of hepatocyte, a hepatic stellate cell line, and stem cells for
developing a bioartificial liver prototype. International Journal of
Technology, 11 (5), 951–962. https://doi.org/10.14716/ijtech.v11i5.4317
Sivaramakrishnan, M., Kothandan, R., Govindarajan, D. K.,
Meganathan, Y., & Kandaswamy, K. (2020). Active
microfluidic systems for cell sorting and separation. Current Opinion in
Biomedical Engineering, 13, 60–68. https://doi.org/10.1016/j.cobme.2019.09.014
Vo, Q. D., Nakamura, K., Saito, Y., Iida, T., Yoshida,
M., Amioka, N., Akagi, S., Miyoshi, T., & Yuasa, S. (2024). Ipsc-derived biological pacemaker—from bench to bedside. Cells, 13 (24), 2045. https://doi.org/10.3390/cells13242045
Williams,
M. G., Faber, Z. J., & Kelley, T. J. (2025). Comparison of artificial
intelligence image processing with manual leucocyte differential to score
immune cell infiltration in a mouse infection model of cystic fibrosis. Journal
of Pathology Informatics, 17, 100438. https://doi.org/10.1016/j.jpi.2025.100438
Yousafzai, M. S., & Hammer, J. A. (2023). Using biosensors to study organoids, spheroids and organs-on-a-chip: A mechanobiology perspective. Biosensors, 13 (10), 905. https://doi.org/10.3390/bios13100905
Zhang, J., Lin, H., Xu, J., Zhang, M., Ge, X., Zhang, C., Huang, W. E., & Cheng, J. X. (2024). High-throughput single-cell sorting by stimulated raman-activated cell ejection. Science Advances, 10 (50), adn6373. https://doi.org/10.1126/sciadv.adn6373