• International Journal of Technology (IJTech)
  • Vol 17, No 1 (2026)

Cell Detection Methods to Enhance the Sorting Rate of a Large-Cell Sorter

Cell Detection Methods to Enhance the Sorting Rate of a Large-Cell Sorter

Title: Cell Detection Methods to Enhance the Sorting Rate of a Large-Cell Sorter
Shinnosuke Dowaki, Meito Fukada, Taiji Okano, Yosuke Tanaka

Corresponding email:


Cite this article as:
Dowaki, S., Fukada, M., Okano, T., & Tanaka, Y. (2026). Cell detection methods to enhance the sorting rate of a large-cell sorter. International Journal of Technology, 17 (1), 272-281

9
Downloads
Shinnosuke Dowaki Graduate School of Engineering, Department of Biomedical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
Meito Fukada Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
Taiji Okano Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
Yosuke Tanaka Graduate School of Engineering, Department of Biomedical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan
Email to Corresponding Author

Abstract
Cell Detection Methods to Enhance the Sorting Rate of a Large-Cell Sorter

Shrimp farming is widespread in Indonesia, and the risk of mass mortality due to disease outbreaks remains a significant concern. Recent research aimed at developing disease-resistant shrimp through genome editing has made remarkable progress. Additionally, the need for techniques that can efficiently isolate gene-edited cells is increasing. Currently, conventional cell sorters cannot be applied to millimeter-scale cells, such as egg cells; as a result, most isolation operations are still manual. To address this issue, we developed a millifluidics-based sorting system that selectively isolates only the fluorescently stained target cells from a population of large-sized cells. The sorting employs computer-based image processing, achieving high-purity sorting at a rate of 1.6 cells/s. This study aimed to improve the sorting rate while maintaining high purity by integrating the existing cell detection method with analog electronic fluorescence detection. As a result, a sorting rate of 2.85 cells/s was achieved even under non-optimized conditions, representing 1.8-fold increase in the sorting rate compared with that in a previous study. Because the cell detection speed is expected to be >10 times faster than previously described methods under optimized conditions, a sorting rate of >10 cells/s can be achieved in the future by further improving the detection circuit. This result represents a crucial step toward the practical implementation of high-speed and precision sorting technology for large cells.

Analog electronic circuit; Cell sorter; Fluorescence detection; Large-cell sorting; Real-time signal detection

References

Azwani, W., Cahya, D. A., Gazali, A. D., Karima, A. P., Oktavya, G., Istiqomah, R. N., Bustami, A., Rizqy, F. A., Katili, P. A., Purnama, U., & Djer, M. M. (2025). Biomaterial characterization of decellularized human amniotic membrane seeded with fetal human cardiac fibroblasts for cardiac tissue engineering. International Journal of Technology, 16 (5), 1651–1664. https://doi.org/10.14716/ijtech.v16i5.7808

Capek, D., Safroshkin, M., Morales-Navarrete, H., Toulany, N., Arutyunov, G., Kurzbach, A., Bihler, J., Hagauer, J., Kick, S., Jones, F., Jordan, B., & Muller, P. (2023). Embryonet: Using deep learning to link embryonic phenotypes to signaling pathways. Nature Methods, 20, 815–823.

Chen, D., Xu, L., Xuan, M., Chu, Q., & Xue, C. (2024). Unveiling the functional roles of patient-derived tumour organoids in assessing the tumour microenvironment and immunotherapy. Clinical and Translational Medicine, 14 (9), e1802. https://doi.org/10.1002/ctm2.180

Cotta, G. C., Santos, R. C. T. D., Costa, G. M. C., & Lacerda, S. M. S. N. (2024). Reporter alleles in hipscs: Visual cues on development and disease. International Journal of Molecular Sciences, 25 (20), 11009. https://doi.org/10.3390/ijms252011009

Dinca, M. A., Ardeleanu, M. N., Puchianu, D. C., & Predusca, G. (2025). Preliminary study on sensor-based detection of an adherent cell’s pre-detachment moment in a mpwm microfluidic extraction system. Sensors, 25 (9), 2726. https://doi.org/10.3390/s25092726

Diouf, A., Sadak, F., Gerena, E., Mannioui, A., Zizioli, D., Fassi, I., Boudaoud, M., Legnani, G., & Haliyo, S. (2024). Robotic sorting of zebrafish embryos. Journal of Micro and Bio Robotics, 20, 3.

Fukada, M., Saito, K., & Okano, T. (2021). Capsule vending machine-like device for cell release with equal intervals. Proceedings of MicroTAS 2021, 243–244.

Gao, G., Shao, T., Li, T., & Wang, S. (2025). Harnessing optical forces with advanced nanophotonic structures: Principles and applications. Discover Nano, 20, 76.

Han, X., Zhou, Z., Fei, L., Sun, H., Wang, R., Chen, Y., Chen, H., Wang, J., Tang, H., Ge, W., Zhou, Y., Ye, F., Jiang, M., Wu, J., Xiao, Y., Jia, X., Zhang, T., Ma, X., Zhang, Q., . . .Guo, G. (2020). Construction of a human cell landscape at single-cell level. Nature, 581, 303–309.

Hanninen, A. (2024). Vibrational imaging of metabolites for improved microbial cell strains. Journal of Biomedical Optics, 29 (S2), S22711. https://doi.org/10.1117/1.JBO.29.S2.S22711

He, J., Cai, S., Feng, H., Cai, B., Lin, L., Mai, Y., Fan, Y., Zhu, A., Huang, H., Shi, J., Li, D., Wei, Y., Li, Y., Zhao, Y., Pan, Y., Liu, H., Mo, X., He, X., Cao, S., . . . Chen, J. (2020). Single-cell analysis reveals bronchoalveolar epithelial dysfunction in covid-19 patients. Protein and Cell, 11 (9), 680–687. https://doi.org/10.1007/s13238-020-00752-4

Isozaki, A., Mikami, H., Tezuka, H., Matsumura, H., Huang, K., Akamine, M., Hiramatsu, K., Iino, T., Ito, T., Karakawa, H., Kasai, Y., Li, Y., Nakagawa, Y., Ohnuki, S., Ota, T., Qian, Y., Sakuma, S., Sekiya, T., Shirasaki, Y., . . . Goda, K. (2020). Intelligent image-activated cell sorting 2.0. Lab on a Chip, 20 (13), 2263–2273. https://doi.org/10.1039/d0lc00080a

Jones, R. A., Renshaw, M. J., Barry, D. J., & Smith, J. C. (2023). Automated staging of zebrafish embryos using machine learning. Wellcome Open Research, 7, 275.

Li, P., Li, X., Wang, F., Gao, M., Bai, Y., Zhang, Z., & Wei, Z. (2024). Enrichment of prime-edited mammalian cells with surrogate puror reporters. International Journal of Biological Macromolecules, 271, 132474. https://doi.org/10.12688/wellcomeopenres.18313.3

Liao, M., Liu, Y., Yuan, J., Wen, Y., Xu, G., Zhao, J., Cheng, L., Li, J., Wang, X., Wang, F., Liu, L., Amit, I., Zhang, S., & Zhang, Z. (2020). Single-cell landscape of bronchoalveolar immune cells in patients with covid-19. Nature Medicine, 26, 842–844. https://doi.org/10.1038/s41591-020-0901-9

Liu, J., Zhi, X., Fang, X., Li, W., Zhao, W., Liu, M., Lai, E., Fang, W., Wang, J., Zheng, Y., Zou, J., Fu, Q., & Cui, W. (2025). The application of microfluidic chips in primary urological cancer: Recent advances and future perspectives. Smart Medicine, 1, 70010. https://doi.org/10.1002/smmd.70010

Lu, N., Tay, H. M., Petchakup, C., He, L., Gong, L., Maw, K. K., Leong, S. Y., Lok, W. W., Ong, H. B., Guo, R., Li, K. H. H., & Hou, H. W. (2023). Label-free microfluidic cell sorting and detection for rapid blood analysis. Lab on a Chip, 23, 1226–1257. https://doi.org/10.1039/D2LC00904H

Lyu, Y., Yuan, X., Glidle, A., & Fu, Y. (2020). Automated raman based cell sorting with 3d microfluidics. Lab on a Chip, 20 (22), 4235–4245. https://doi.org/10.1039/D0LC00679C

Naderi, A. M., Bu, H., Su, J., Huang, M. H., Vo, K., Trigo Torres, R. S., Chiao, J. C., Lee, J., Lau, M. P. H., Xu, X., & Cao, H. (2021). Deep learning-based framework for cardiac function assessment in embryonic zebrafish from heart beating videos. Computers in Biology and Medicine, 135, 104565. https://doi.org/10.1016/j.compbiomed.2021.104565

Napitupulu, M., Zai, F., Lestari, S. W., Witjaksono, L., Drakel, Z., Bhavnani, D., Yunihastuti, E., Pratama, G., Kodariah, R., & Kusmardi, K. (2025). Oxidative stress, dna fragmentation and caspase-3 regulation in hiv-1 positive men: A study of sperm preparation. International Journal of Technology, 16 (2), 639–651. https://doi.org/10.14716/ijtech.v16i2.6420

Nguyen, T. D., Chooi, W. H., Jeon, H., Chen, J., Tan, J., Roxby, D. N., Lee, C. Y. P., Ng, S. Y., Chew, S. Y., & Han, J. (2024). Label-free and high-throughput removal of residual undifferentiated cells from ipsc-derived spinal cord progenitor cells. Stem Cells Translational Medicine, 13 (4), 387–398. https://doi.org/10.1093/stcltm/szae002

Nie, X., Luo, Y., Shen, P., Han, C., Yu, D., & Xing, X. (2021). High-throughput dielectrophoretic cell sorting assisted by cell sliding on scalable electrode tracks made of conducting-pdms. Sensors and Actuators B: Chemical, 327, 128873.

Nitta, N., Iino, T., Isozaki, A., Yamagishi, M., Kitahama, Y., Sakuma, S., Suzuki, Y., Tezuka, H., Oikawa, M., Arai, F., Asai, T., Deng, D., Fukuzawa, H., Hase, M., Hasunuma, T., Hayakawa, T., Hiraki, K., Hiramatsu, K., Hoshino, Y., . . . Goda, K. (2020). Raman image-activated cell sorting. Nature Communications, 11 (1), 3452. https://doi.org/10.1038/s41467-020-17285-3

Nurhayati, R. W., Lubis, D. S. H., Pratama, G., Agustina, E., Khoiriyah, Z., Alawiyah, K., & Pawitan, J. A. (2021). The effects of static and dynamic culture systems on cell proliferation and conditioned media of umbilical cord-derived mesenchymal stem cells. International Journal of Technology, 12 (6). https://doi.org/10.14716/ijtech.v12i6.5172

Park, S., Min, C. H., Choi, E., Choi, J. S., Park, K., Han, S., Choi, W., Jang, H. J., Cho, K. O., & Kim, M. (2025). Long-term tracking of neural and oligodendroglial development in large-scale human cerebral organoids by noninvasive volumetric imaging. Scientific Reports, 15, 2536. https://doi.org/10.1038/s41598-025-85455-8

Pragiwaksana, A., Irsyad, M., Nadhif, M., Muradi, A., Jasirwan, C. O. M., Juniantito, V., Syaiful, R. A., & Antarianto, R. D. (2024). Maintenance of hipsc-derived hepatocytes in a perfusion bioreactor integrated with stem cell hepatic intuitive apparatus. International Journal of Technology, 15 (5). https://doi.org/10.14716/ijtech.v15i5.6088

Qiang, Y., Xu, M., Pochron, M. P., Jupelli, M., & Dao, M. (2024). A framework of computer vision-enhanced microfluidic approach for automated assessment of the transient sickling kinetics in sickle red blood cells. Frontiers in Physics, 12, 1331047. https://doi.org/10.3389/fphy.2024.1331047

Raffaele, I., Cipriano, G. L., Anchesi, I., Oddo, S., & Silvestro, S. (2025). Crispr/cas9 and ipsc-based therapeutic approaches in alzheimer’s disease. Antioxidants, 14 (7), 781.

Saito, K., Ota, Y., Tourlousse, D. M., Matsukura, S., Fujitani, H., Morita, M., Tsuneda, S., & Noda, N. (2021). Microdroplet-based system for culturing of environmental microorganisms using fnap-sort. Scientific Reports, 11 (1), 9506. https://doi.org/10.1038/s41598-021-88971-6

Shen, M. J., Olsthoorn, R. C. L., Zeng, Y., Bakkum, T., Kros, A., & Boyle, A. L. (2021). Magnetic-activated cell sorting using coiled-coil peptides: An alternative strategy for isolating cells with high efficiency and specificity. ACS Applied Materials and Interfaces, 13 (10), 11621–11630. https://doi.org/10.1021/acsami.0c22185

Sibuea, C. V., Pawitan, J., Antarianto, R., Jasirwan, C. O. M., Sianipar, I. R., Luviah, E., Nurhayati, R. W., Mubarok, W., Fahdia, N., & Mazfufah, M. (2020). 3d co-culture of hepatocyte, a hepatic stellate cell line, and stem cells for developing a bioartificial liver prototype. International Journal of Technology, 11 (5), 951–962. https://doi.org/10.14716/ijtech.v11i5.4317

Sivaramakrishnan, M., Kothandan, R., Govindarajan, D. K., Meganathan, Y., & Kandaswamy, K. (2020). Active microfluidic systems for cell sorting and separation. Current Opinion in Biomedical Engineering, 13, 60–68. https://doi.org/10.1016/j.cobme.2019.09.014

Vo, Q. D., Nakamura, K., Saito, Y., Iida, T., Yoshida, M., Amioka, N., Akagi, S., Miyoshi, T., & Yuasa, S. (2024). Ipsc-derived biological pacemaker—from bench to bedside. Cells, 13 (24), 2045. https://doi.org/10.3390/cells13242045

Williams, M. G., Faber, Z. J., & Kelley, T. J. (2025). Comparison of artificial intelligence image processing with manual leucocyte differential to score immune cell infiltration in a mouse infection model of cystic fibrosis. Journal of Pathology Informatics, 17, 100438. https://doi.org/10.1016/j.jpi.2025.100438

Yousafzai, M. S., & Hammer, J. A. (2023). Using biosensors to study organoids, spheroids and organs-on-a-chip: A mechanobiology perspective. Biosensors, 13 (10), 905. https://doi.org/10.3390/bios13100905

Zhang, J., Lin, H., Xu, J., Zhang, M., Ge, X., Zhang, C., Huang, W. E., & Cheng, J. X. (2024). High-throughput single-cell sorting by stimulated raman-activated cell ejection. Science Advances, 10 (50), adn6373. https://doi.org/10.1126/sciadv.adn6373