Published at : 28 Jan 2026
Volume : IJtech
Vol 17, No 1 (2026)
DOI : https://doi.org/10.14716/ijtech.v17i1.8049
| Jie Chen | 1. Dr. Ma’s Laboratories Inc., Unit 4, 8118 North Fraser Way, Burnaby, BC V5J 0E5, Canada 2. North American Institute of Medicinal Plants, 19062 34A Ave, Surrey, BC V3S 0L5, Canada |
| Leila Dehabadi | Dr. Ma’s Laboratories Inc., Unit 4, 8118 North Fraser Way, Burnaby, BC V5J 0E5, Canada |
| Amandio Vieira | Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada |
| Yuan-Chun Ma | 1. Dr. Ma’s Laboratories Inc., Unit 4, 8118 North Fraser Way, Burnaby, BC V5J 0E5, Canada 2. North American Institute of Medicinal Plants, 19062 34A Ave, Surrey, BC V3S 0L5, Canada |
| Lee Wilson | Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada |
Innovative food-grade lipid-based formulations incorporating multicomponent nutrients: vitamin C with vitamin D3 and vitamin D3 with calcium, were developed. Morphological characteristics, particle size, and physical stability were assessed using transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential analysis. High-Performance Liquid Chromatography (HPLC) was used to quantify vitamin C and vitamin D3 directly, while calcium was measured indirectly via its chelated amino acid complex. TEM imaging results confirmed the formation of spherical unilamellar vesicles across all formulations. DLS analysis revealed an average particle size of 168.3 nm with a zeta potential of -22.9 mV for the vitamin C plus D3 formulation and 329.3 nm with a zeta potential of -5.2 mV for the calcium plus D3 formulation. Encapsulation efficiency (EE) was determined to be approximately 50% for vitamin C and >90% for vitamin D3. Stability assessments over a six-month period at 4 oC and 25 oC indicated high retention rates for calcium (>98%) and vitamin C (>92%), whereas vitamin D3 retention ranged between 70% and 87% depending on storage temperature. Calcium maintained complete stability under simulated gastrointestinal digestion, while vitamin D3 retained an encapsulation efficiency exceeding 30%. These findings demonstrate that liposomal encapsulation effectively accommodates nutrients with differing hydrophilic and lipophilic properties, yielding homogeneous, stable formulations with enhanced oral bioavailability.
Liposomal encapsulation; Multivitamin–Multimineral supplement; Oral bioavailability; Simulated digestion; Quantitative analysis
Afrooz, H., Ahmadi, F., Fallahzadeh, F.,
Mousavi-Fard, H., & Alipour, S. (2017). Design and characterization of
paclitaxel–verapamil co-encapsulated PLGA nanoparticles: Potential system for
overcoming P-glycoprotein-mediated MDR. Journal of Drug Delivery Science and
Technology, 41, 174–181. https://doi.org/10.1016/j.jddst.2017.06.020
Akbarzadeh, A., Rezaei-Sadabady, R.,
Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M.,
& Nejati-Koshki, K. (2013). Liposome: Classification, preparation, and
applications. Nanoscale Research Letters, 8, 102–111. https://doi.org/10.1186/1556-276X-8-102
AlSawaftah, N., Pitt, W. G., & Husseini, G. A. (2021). Dual-targeting
and stimuli-triggered liposomal drug delivery in cancer treatment. ACS
Pharmacology & Translational Science, 4, 1028–1049. https://doi.org/10.1021/acsptsci.1c00066
Barenholz, Y. C. (2012). Doxil®—The first
FDA-approved nano-drug: Lessons learned. Journal of Controlled Release, 160,
117–134. https://doi.org/10.1016/j.jconrel.2012.03.020
Blumberg, J. B., Cena, H., Barr, S. I.,
Biesalski, H. K., Dagach, R. U., Delaney, B., Frei, B., Moreno Gonzalez, M. I.,
Hwalla, N., Lategan-Potgieter, R., McNulty, H., Pols, J. C. V., Winichagoon,
P., & Li, D. (2018). The use of multivitamin/multimineral supplements: A
modified Delphi consensus panel report. Clinical Therapeutics, 40,
640–657. https://doi.org/10.1016/j.clinthera.2018.02.014
Catterall, W. A. (2011). Voltage-gated
calcium channels. Cold Spring Harbor Perspectives in Biology, 3,
a003947. https://doi.org/10.1101/cshperspect.a003947
Chaves, M. A., Filho, P. L. O., Jange, C. G., Sinigaglia-Coimbra, R.,
Oliveira, C. L. P., & Pinho, S. C. (2018). Structural
characterization of multilamellar liposomes coencapsulating curcumin and
vitamin D3. Colloids and Surfaces A: Physicochemical and Engineering
Aspects, 549, 112–121. https://doi.org/10.1016/j.colsurfa.2018.04.018
Chen, J., Dehabadi, L., Ma, Y. C., & Wilson, L. (2022). Development
of novel lipid-based formulations for water-soluble vitamin C versus
fat-soluble vitamin D3. Bioengineering, 9, 819–823. https://doi.org/10.3390/bioengineering9120819
Cooper, D., & Dimri, M. (2021). Biochemistry,
calcium channels. https://www.ncbi.nlm.nih.gov/books/NBK562198/
Dalmoro, A., Bochicchio, S., Lamberti,
G., Bertoncin, P., Janssens, B., & Barba, A. A. (2019). Micronutrients
encapsulation in enhanced nanoliposomal carriers by a novel preparative
technology. RSC Advances, 9, 19800–19812. https://doi.org/10.1039/C9RA03022K
Dangkoub, F., Bemani Naeini, M., Akar,
S., Badiee, A., Jaafari, M. R., Sankian, M., Tafaghodi, M., & Mousavi
Shaegh, S. A. (2024). Preparation of atorvastatin calcium-loaded liposomes
using thin-film hydration and coaxial micromixing methods: A comparative study.
International Journal of Pharmaceutics X, 8, 100309. https://doi.org/10.1016/j.ijpx.2024.100309
Daraee, H., Etemadi, A., Kouhi, M.,
Alimirzalu, S., & Akbarzadeh, A. (2016). Application of liposomes in
medicine and drug delivery. Artificial Cells, Nanomedicine, and
Biotechnology, 44, 381–391. https://doi.org/10.3109/21691401.2014.953633
Davis, J. L., Paris, H. L., Beals, J. W.,
Binns, S. E., Giordano, G. R., Scalzo, R. L., Schweder, M. M., Blair, E., &
Bell, C. (2016). Liposomal-encapsulated ascorbic acid: Influence on vitamin C
bioavailability and capacity to protect against ischemia-reperfusion injury. Nutrition
and Metabolic Insights, 9, 25–30. https://doi.org/10.4137/NMI.S39764
Deshpande, P. P., Biswas, S., &
Torchilin, V. P. (2013). Current trends in the use of liposomes for tumor
targeting. Nanomedicine, 8, 1509–1528. https://doi.org/10.2217/nnm.13.118
Frenzel, M., Krolak, E., Wagner, A. E., & Steffen-Heins, A. (2015). Physicochemical
properties of WPI-coated liposomes serving as stable transporters in a real
food matrix. LWT – Food Science and Technology, 63, 527–534. https://doi.org/10.1016/j.lwt.2015.03.055
Ghadami, S., & Dellinger, K. (2023).
The lipid composition of extracellular vesicles: Applications in diagnostics
and therapeutic delivery. Frontiers in Molecular Biosciences, 10. https://doi.org/10.3389/fmolb.2023.1198044
Haque, F., Jamali, S., & Moradi, M.
(2024). Molecular dynamics simulation analysis of the effects and mechanisms of
lipid nanoparticles in drug delivery systems. Biophysical Journal, 123,
504a. https://doi.org/10.1016/j.bpj.2023.11.3051
Huang, Y., Chang, Z., Gao, Y., Ren, C.,
Lin, Y., Zhang, X., Wu, C., Pan, X., & Huang, Z. (2024). Overcoming the
low-stability bottleneck in the clinical translation of liposomal pressurized
metered-dose inhalers: A shell stabilization strategy inspired by
biomineralization. International Journal of Molecular Sciences, 25,
3261. https://doi.org/10.3390/ijms25063261
Irawan, Y., Juliana, I., Adilina, I. B.,
& Alli, Y. (2017). Aqueous stability studies of polyethylene glycol and
oleic acid-based anionic surfactants for application in enhanced oil recovery
through dynamic light scattering. International Journal of Technology, 8(8),
1414–1421. https://doi.org/10.14716/ijtech.v8i8.690
Jeung, J. J. (2016). Vitamin C
delivery system and liposomal composition thereof (US20160367480A1). https://patents.google.com/patent/US20160367480A1/en
Kerksick, C. M., Wilborn, C. D., Roberts,
M. D., Smith-Ryan, A., Kleiner, S. M., Jäger, R., Collins, R., Cooke, M.,
Davis, J. N., Galvan, E., Greenwood, M., Lowery, L. M., Wildman, R., Antonio,
J., & Kreider, R. B. (2018). ISSN exercise & sports nutrition review
update: Research & recommendations. Journal of the International Society
of Sports Nutrition, 15, 38. https://doi.org/10.1186/s12970-018-0242-y
Ko, J., Yoo, C., Xing, D., Gonzalez, D.
E., Jenkins, V., Dickerson, B., Leonard, M., Nottingham, K., Kendra, J.,
Sowinski, R., Rasmussen, C. J., & Kreider, R. B. (2023). Pharmacokinetic
analyses of liposomal and non-liposomal multivitamin/mineral formulations. Nutrients,
15, 3073–3090. https://doi.org/10.3390/nu15133073
Kraft, J. C., Freeling, J. P., Wang, Z.,
& Ho, R. J. (2014). Emerging research and clinical development trends of
liposome and lipid nanoparticle drug delivery systems. Journal of
Pharmaceutical Sciences, 103, 29–52. https://doi.org/10.1002/jps.23773
Lee, M.-K. (2020). Liposomes for enhanced
bioavailability of water-insoluble drugs: In vivo evidence and recent
approaches. Pharmaceutics, 12(3), 264. https://doi.org/10.3390/pharmaceutics12030264
Liu, X., Wang, P., Zou, Y. X., Luo, Z.
G., & Tamer, T. M. (2020). Co-encapsulation of vitamin C and ?-carotene in
liposomes: Storage stability, antioxidant activity, and in vitro
gastrointestinal digestion. Food Research International, 136,
109587–109595. https://doi.org/10.1016/j.foodres.2020.109587
Lou, J., & Best, M. D. (2020).
Calcium-responsive liposomes: Toward ion-mediated targeted drug delivery. Methods
in Enzymology, 640, 105–129. https://doi.org/10.1016/bs.mie.2020.04.005
Lukawski, M., Dalek, P., Borowik, T.,
Fory?, A., Langner, M., Witkiewicz, W., & Przyby?o, M. (2020). New oral
liposomal vitamin C formulation: Properties and bioavailability. Journal of
Liposome Research, 30, 227–234. https://doi.org/10.1080/08982104.2019.1630642
Maione-Silva, L., de Castro, E. G.,
Nascimento, T. L., Cintra, E. R., Moreira, L. C., Cintra, B. A. S., Valadares,
M. C., & Lima, E. M. (2019). Ascorbic acid encapsulated into negatively
charged liposomes exhibits increased skin permeation, retention and enhances
collagen synthesis by fibroblasts. Scientific Reports, 9, 522. https://doi.org/10.1038/s41598-018-36682-9
Mankan, E., Karakas, C. Y., Saroglu, O.,
Mzoughi, M., Sagdic, O., & Karadag, A. (2025). Food-grade liposome-loaded
delivery systems: Current trends and future perspectives. Foods, 14(17),
2978. https://doi.org/10.3390/foods14172978
Melcrová, A., Pokorna, S., Pullanchery,
S., Kohagen, M., Jurkiewicz, P., Hof, M., Jungwirth, P., Cremer, P. S., &
Cwiklik, L. (2016). The complex nature of calcium cation interactions with
phospholipid bilayers. Scientific Reports, 6, 38035. https://doi.org/10.1038/srep38035
Mohammadi, M., Ghanbarzadeh, B., &
Hamishehkar, H. (2014). Formulation of nanoliposomal vitamin D3 for potential
application in beverage fortification. Advanced Pharmaceutical Bulletin, 4,
569–575. https://doi.org/10.5681/apb.2014.084
Mozafari, M. R., Johnson, C.,
Hatziantoniou, S., & Demetzos, C. (2008). Nanoliposomes and their
applications in food nanotechnology. Journal of Liposome Research, 18,
309–327. https://doi.org/10.1080/08982100802465941
Nakhaei, P., Margiana, R., Bokov, D. O.,
Abdelbasset, W. K., Jadidi Kouhbanani, M. A., Varma, R. S., Marofi, F.,
Jarahian, M., & Beheshtkhoo, N. (2021). Liposomes: Structure, biomedical
applications, and stability parameters with emphasis on cholesterol. Frontiers
in Bioengineering and Biotechnology, 9, 705886–705909. https://doi.org/10.3389/fbioe.2021.705886
Noble, G. T., Stefanick, J. F., Ashley,
J. D., Kiziltepe, T., & Bilgicer, B. (2014). Ligand-targeted liposome
design: Challenges and fundamental considerations. Trends in Biotechnology,
32, 32–45. https://doi.org/10.1016/j.tibtech.2013.09.007
Nsairat, H., Khater, D., Sayed, U., Odeh,
F., Bawab, A., & Alshaer, W. (2022). Liposomes: Structure, composition,
types, and clinical applications. Heliyon, 8, e09394. https://doi.org/10.1016/j.heliyon.2022.e09394
Pedersen, U. R., Leidy, C., Westh, P., & Peters, G. H. (2006). The
effect of calcium on the properties of charged phospholipid bilayers. Biochimica
et Biophysica Acta (BBA) – Biomembranes, 1758, 573–582. https://doi.org/10.1016/j.bbamem.2006.03.035
Peter, M. F., & Hubert, D. H. W. (2005). Cryoelectron microscopy
of liposomes. Methods in Enzymology, 391, 431–448. https://doi.org/10.1016/S0076-6879(05)91024-0
Raval, N., Maheshwari, R., Kalyane, D.,
Youngren-Ortiz, S. R., Chougule, M. B., & Tekade, R. K. (2019). Importance
of physicochemical characterization of nanoparticles in pharmaceutical product
development. In Basic fundamentals of drug delivery. Academic Press. https://doi.org/10.1016/B978-0-12-817909-3.00010-8
Sapei, L., Savitri, E., Jati, I. R. A., Indrawanto, R., Darsono, H. E.,
Anggraeni, Y., & Sumampouw, C. (2024). Stability and kinetic study
of vitamin C containing hydrogenated and middle-chain triglyceride coconut
oil-based double emulsion. International Journal of Technology, 15(6),
1982–1993. https://doi.org/10.14716/ijtech.v15i6.6371
Shade, C. W. (2016). Liposomes as
advanced delivery systems for nutraceuticals. Integrative Medicine, 15(1),
33–36.
Shofinita, D., Harimawan, A., Almaishya,
N., Dewi, A. M., Thamleonard, J., & Achmadi, A. B. (2025). Enhancing
viability of probiotic by microencapsulation: A case study in ice cream. International
Journal of Technology, 16(4), 1337–1347. https://doi.org/10.14716/ijtech.v16i4.6886
Skrinda-Melne, M., Locs, J., Grava, A.,
& Dubnika, A. (2024). Calcium phosphates enhanced with liposomes: The
future of bone regeneration and drug delivery. Journal of Liposome Research,
34(3), 507–522. https://doi.org/10.1080/08982104.2023.2285973
Strange, R. C., Shipman, K. E., &
Ramachandran, S. (2015). Metabolic syndrome: A review of the role of vitamin D
in mediating susceptibility and outcome. World Journal of Diabetes, 6,
896–911. https://doi.org/10.4239/wjd.v6.i7.896
Szcze?, A., & Sternik, D. (2016).
Properties of calcium carbonate precipitated in the presence of DPPC liposomes
modified with the phospholipase A2. Journal of Thermal Analysis and
Calorimetry, 123, 2357–2365. https://doi.org/10.1007/s10973-015-4958-5
Tenchov, R., Bird, R., Curtze, A. E.,
& Zhou, Q. (2021). Lipid nanoparticles—from liposomes to mRNA vaccine
delivery, a landscape of research diversity and advancement. ACS Nano, 15,
16982–17015. https://doi.org/10.1021/acsnano.1c04996
Tinsley, G. M., Harty, P. S., Stratton,
M. T., Siedler, M. R., & Rodriguez, C. (2022). Liposomal mineral
absorption: A randomized crossover trial. Nutrients, 14, 3321–3337. https://doi.org/10.3390/nu14163321
US Preventive Services Task Force,
Mangione, C. M., Barry, M. J., Nicholson, W. K., Cabana, M., Chelmow, D.,
Coker, T. R., Davis, E. M., Donahue, K. E., Doubeni, C. A., Jaen, C. R., Kubik,
M., Li, L., Ogedegbe, G., Pbert, L., Ruiz, J. M., Stevermer, J., & Wong, J.
B. (2022). Vitamin, mineral, and multivitamin supplementation to prevent
cardiovascular disease and cancer: US Preventive Services Task Force
recommendation statement. JAMA, 327, 2326–2333. https://doi.org/10.1001/jama.2022.8970
Vakilinezhad, M. A., Amini, A.,
Akbari-Javar, H., Baha’addini Beigi Zarandi, B. F., Montaseri, H., &
Dinarvand, R. (2018). Nicotinamide-loaded functionalized solid lipid
nanoparticles improve cognition in Alzheimer’s disease animal model by reducing
tau hyperphosphorylation. DARU Journal of Pharmaceutical Sciences, 26,
165–177. https://doi.org/10.1007/s40199-018-0221-5
Venegas-García, D. J., Wu, L. D., &
Cruz-Guzmán, M. D. L. (2024). Aloe vera mucilage as a sustainable biopolymer
flocculant for efficient arsenate anion removal from water. RSC Sustainability, 2(9), 2632–2643. https://doi.org/10.1039/d4su00170b
Wibowo, A., Jatmiko, A., Ananda, M. B., Rachmawati, S. A., Ardy, H., Aimon,
A. H., & Iskandar, F. (2021). Facile fabrication of polyelectrolyte
complex nanoparticles based on chitosan–poly(2-acrylamido-2-methylpropane
sulfonic acid) as a potential drug carrier material. International Journal
of Technology, 12(3), 561–570. https://doi.org/10.14716/ijtech.v12i3.4193
Yang, K., Tran, K., & Salvati, A.
(2023). Tuning liposome stability in biological environments and intracellular
drug release kinetics. Biomolecules, 13, 59. https://doi.org/10.3390/biom13010059
Zhao, L., Temelli, F., & Chen, L. (2017). Encapsulation of anthocyanin in liposomes using supercritical carbon dioxide: Effects of anthocyanin and sterol concentrations. Journal of Functional Foods, 34, 159–167. https://doi.org/10.1016/j.jff.2017.04.021