• International Journal of Technology (IJTech)
  • Vol 17, No 1 (2026)

Next-Generation Nutrient Delivery: Physicochemical Insights into Multicomponent Liposomes

Next-Generation Nutrient Delivery: Physicochemical Insights into Multicomponent Liposomes

Title: Next-Generation Nutrient Delivery: Physicochemical Insights into Multicomponent Liposomes
Jie Chen, Leila Dehabadi, Amandio Vieira, Yuan-Chun Ma, Lee Wilson

Corresponding email:


Cite this article as:
Chen, J., Dehabadi, L., Vieira, A., Ma, Y. C., & Wilson, L. (2026). Next-generation nutrient delivery: Physicochemical insights into multicomponent liposomes. International Journal of Technology, 17 (1), 282-300


16
Downloads
Jie Chen 1. Dr. Ma’s Laboratories Inc., Unit 4, 8118 North Fraser Way, Burnaby, BC V5J 0E5, Canada 2. North American Institute of Medicinal Plants, 19062 34A Ave, Surrey, BC V3S 0L5, Canada
Leila Dehabadi Dr. Ma’s Laboratories Inc., Unit 4, 8118 North Fraser Way, Burnaby, BC V5J 0E5, Canada
Amandio Vieira Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
Yuan-Chun Ma 1. Dr. Ma’s Laboratories Inc., Unit 4, 8118 North Fraser Way, Burnaby, BC V5J 0E5, Canada 2. North American Institute of Medicinal Plants, 19062 34A Ave, Surrey, BC V3S 0L5, Canada
Lee Wilson Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
Email to Corresponding Author

Abstract
Next-Generation Nutrient Delivery: Physicochemical Insights into Multicomponent Liposomes

Innovative food-grade lipid-based formulations incorporating multicomponent nutrients: vitamin C with vitamin D3 and vitamin D3 with calcium, were developed. Morphological characteristics, particle size, and physical stability were assessed using transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential analysis. High-Performance Liquid Chromatography (HPLC) was used to quantify vitamin C and vitamin D3 directly, while calcium was measured indirectly via its chelated amino acid complex. TEM imaging results confirmed the formation of spherical unilamellar vesicles across all formulations. DLS analysis revealed an average particle size of 168.3 nm with a zeta potential of -22.9 mV for the vitamin C plus D3 formulation and 329.3 nm with a zeta potential of -5.2 mV for the calcium plus D3 formulation. Encapsulation efficiency (EE) was determined to be approximately 50% for vitamin C and >90% for vitamin D3. Stability assessments over a six-month period at 4 oC and 25 oindicated high retention rates for calcium (>98%) and vitamin C (>92%), whereas vitamin D3 retention ranged between 70% and 87% depending on storage temperature. Calcium maintained complete stability under simulated gastrointestinal digestion, while vitamin D3 retained an encapsulation efficiency exceeding 30%. These findings demonstrate that liposomal encapsulation effectively accommodates nutrients with differing hydrophilic and lipophilic properties, yielding homogeneous, stable formulations with enhanced oral bioavailability.

Liposomal encapsulation; Multivitamin–Multimineral supplement; Oral bioavailability; Simulated digestion; Quantitative analysis

Introduction

Afrooz, H., Ahmadi, F., Fallahzadeh, F., Mousavi-Fard, H., & Alipour, S. (2017). Design and characterization of paclitaxel–verapamil co-encapsulated PLGA nanoparticles: Potential system for overcoming P-glycoprotein-mediated MDR. Journal of Drug Delivery Science and Technology, 41, 174–181. https://doi.org/10.1016/j.jddst.2017.06.020

Akbarzadeh, A., Rezaei-Sadabady, R., Davaran, S., Joo, S. W., Zarghami, N., Hanifehpour, Y., Samiei, M., Kouhi, M., & Nejati-Koshki, K. (2013). Liposome: Classification, preparation, and applications. Nanoscale Research Letters, 8, 102–111. https://doi.org/10.1186/1556-276X-8-102

AlSawaftah, N., Pitt, W. G., & Husseini, G. A. (2021). Dual-targeting and stimuli-triggered liposomal drug delivery in cancer treatment. ACS Pharmacology & Translational Science, 4, 1028–1049. https://doi.org/10.1021/acsptsci.1c00066

Barenholz, Y. C. (2012). Doxil®—The first FDA-approved nano-drug: Lessons learned. Journal of Controlled Release, 160, 117–134. https://doi.org/10.1016/j.jconrel.2012.03.020

Blumberg, J. B., Cena, H., Barr, S. I., Biesalski, H. K., Dagach, R. U., Delaney, B., Frei, B., Moreno Gonzalez, M. I., Hwalla, N., Lategan-Potgieter, R., McNulty, H., Pols, J. C. V., Winichagoon, P., & Li, D. (2018). The use of multivitamin/multimineral supplements: A modified Delphi consensus panel report. Clinical Therapeutics, 40, 640–657. https://doi.org/10.1016/j.clinthera.2018.02.014

Catterall, W. A. (2011). Voltage-gated calcium channels. Cold Spring Harbor Perspectives in Biology, 3, a003947. https://doi.org/10.1101/cshperspect.a003947

Chaves, M. A., Filho, P. L. O., Jange, C. G., Sinigaglia-Coimbra, R., Oliveira, C. L. P., & Pinho, S. C. (2018). Structural characterization of multilamellar liposomes coencapsulating curcumin and vitamin D3. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 549, 112–121. https://doi.org/10.1016/j.colsurfa.2018.04.018

Chen, J., Dehabadi, L., Ma, Y. C., & Wilson, L. (2022). Development of novel lipid-based formulations for water-soluble vitamin C versus fat-soluble vitamin D3. Bioengineering, 9, 819–823. https://doi.org/10.3390/bioengineering9120819

Cooper, D., & Dimri, M. (2021). Biochemistry, calcium channels. https://www.ncbi.nlm.nih.gov/books/NBK562198/

Dalmoro, A., Bochicchio, S., Lamberti, G., Bertoncin, P., Janssens, B., & Barba, A. A. (2019). Micronutrients encapsulation in enhanced nanoliposomal carriers by a novel preparative technology. RSC Advances, 9, 19800–19812. https://doi.org/10.1039/C9RA03022K

Dangkoub, F., Bemani Naeini, M., Akar, S., Badiee, A., Jaafari, M. R., Sankian, M., Tafaghodi, M., & Mousavi Shaegh, S. A. (2024). Preparation of atorvastatin calcium-loaded liposomes using thin-film hydration and coaxial micromixing methods: A comparative study. International Journal of Pharmaceutics X, 8, 100309. https://doi.org/10.1016/j.ijpx.2024.100309

Daraee, H., Etemadi, A., Kouhi, M., Alimirzalu, S., & Akbarzadeh, A. (2016). Application of liposomes in medicine and drug delivery. Artificial Cells, Nanomedicine, and Biotechnology, 44, 381–391. https://doi.org/10.3109/21691401.2014.953633

Davis, J. L., Paris, H. L., Beals, J. W., Binns, S. E., Giordano, G. R., Scalzo, R. L., Schweder, M. M., Blair, E., & Bell, C. (2016). Liposomal-encapsulated ascorbic acid: Influence on vitamin C bioavailability and capacity to protect against ischemia-reperfusion injury. Nutrition and Metabolic Insights, 9, 25–30. https://doi.org/10.4137/NMI.S39764

Deshpande, P. P., Biswas, S., & Torchilin, V. P. (2013). Current trends in the use of liposomes for tumor targeting. Nanomedicine, 8, 1509–1528. https://doi.org/10.2217/nnm.13.118

Frenzel, M., Krolak, E., Wagner, A. E., & Steffen-Heins, A. (2015). Physicochemical properties of WPI-coated liposomes serving as stable transporters in a real food matrix. LWT – Food Science and Technology, 63, 527–534. https://doi.org/10.1016/j.lwt.2015.03.055

Ghadami, S., & Dellinger, K. (2023). The lipid composition of extracellular vesicles: Applications in diagnostics and therapeutic delivery. Frontiers in Molecular Biosciences, 10. https://doi.org/10.3389/fmolb.2023.1198044

Haque, F., Jamali, S., & Moradi, M. (2024). Molecular dynamics simulation analysis of the effects and mechanisms of lipid nanoparticles in drug delivery systems. Biophysical Journal, 123, 504a. https://doi.org/10.1016/j.bpj.2023.11.3051

Huang, Y., Chang, Z., Gao, Y., Ren, C., Lin, Y., Zhang, X., Wu, C., Pan, X., & Huang, Z. (2024). Overcoming the low-stability bottleneck in the clinical translation of liposomal pressurized metered-dose inhalers: A shell stabilization strategy inspired by biomineralization. International Journal of Molecular Sciences, 25, 3261. https://doi.org/10.3390/ijms25063261

Irawan, Y., Juliana, I., Adilina, I. B., & Alli, Y. (2017). Aqueous stability studies of polyethylene glycol and oleic acid-based anionic surfactants for application in enhanced oil recovery through dynamic light scattering. International Journal of Technology, 8(8), 1414–1421. https://doi.org/10.14716/ijtech.v8i8.690

Jeung, J. J. (2016). Vitamin C delivery system and liposomal composition thereof (US20160367480A1). https://patents.google.com/patent/US20160367480A1/en

Kerksick, C. M., Wilborn, C. D., Roberts, M. D., Smith-Ryan, A., Kleiner, S. M., Jäger, R., Collins, R., Cooke, M., Davis, J. N., Galvan, E., Greenwood, M., Lowery, L. M., Wildman, R., Antonio, J., & Kreider, R. B. (2018). ISSN exercise & sports nutrition review update: Research & recommendations. Journal of the International Society of Sports Nutrition, 15, 38. https://doi.org/10.1186/s12970-018-0242-y

Ko, J., Yoo, C., Xing, D., Gonzalez, D. E., Jenkins, V., Dickerson, B., Leonard, M., Nottingham, K., Kendra, J., Sowinski, R., Rasmussen, C. J., & Kreider, R. B. (2023). Pharmacokinetic analyses of liposomal and non-liposomal multivitamin/mineral formulations. Nutrients, 15, 3073–3090. https://doi.org/10.3390/nu15133073

Kraft, J. C., Freeling, J. P., Wang, Z., & Ho, R. J. (2014). Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. Journal of Pharmaceutical Sciences, 103, 29–52. https://doi.org/10.1002/jps.23773

Lee, M.-K. (2020). Liposomes for enhanced bioavailability of water-insoluble drugs: In vivo evidence and recent approaches. Pharmaceutics, 12(3), 264. https://doi.org/10.3390/pharmaceutics12030264

Liu, X., Wang, P., Zou, Y. X., Luo, Z. G., & Tamer, T. M. (2020). Co-encapsulation of vitamin C and ?-carotene in liposomes: Storage stability, antioxidant activity, and in vitro gastrointestinal digestion. Food Research International, 136, 109587–109595. https://doi.org/10.1016/j.foodres.2020.109587

Lou, J., & Best, M. D. (2020). Calcium-responsive liposomes: Toward ion-mediated targeted drug delivery. Methods in Enzymology, 640, 105–129. https://doi.org/10.1016/bs.mie.2020.04.005

Lukawski, M., Dalek, P., Borowik, T., Fory?, A., Langner, M., Witkiewicz, W., & Przyby?o, M. (2020). New oral liposomal vitamin C formulation: Properties and bioavailability. Journal of Liposome Research, 30, 227–234. https://doi.org/10.1080/08982104.2019.1630642

Maione-Silva, L., de Castro, E. G., Nascimento, T. L., Cintra, E. R., Moreira, L. C., Cintra, B. A. S., Valadares, M. C., & Lima, E. M. (2019). Ascorbic acid encapsulated into negatively charged liposomes exhibits increased skin permeation, retention and enhances collagen synthesis by fibroblasts. Scientific Reports, 9, 522. https://doi.org/10.1038/s41598-018-36682-9

Mankan, E., Karakas, C. Y., Saroglu, O., Mzoughi, M., Sagdic, O., & Karadag, A. (2025). Food-grade liposome-loaded delivery systems: Current trends and future perspectives. Foods, 14(17), 2978. https://doi.org/10.3390/foods14172978

Melcrová, A., Pokorna, S., Pullanchery, S., Kohagen, M., Jurkiewicz, P., Hof, M., Jungwirth, P., Cremer, P. S., & Cwiklik, L. (2016). The complex nature of calcium cation interactions with phospholipid bilayers. Scientific Reports, 6, 38035. https://doi.org/10.1038/srep38035

Mohammadi, M., Ghanbarzadeh, B., & Hamishehkar, H. (2014). Formulation of nanoliposomal vitamin D3 for potential application in beverage fortification. Advanced Pharmaceutical Bulletin, 4, 569–575. https://doi.org/10.5681/apb.2014.084

Mozafari, M. R., Johnson, C., Hatziantoniou, S., & Demetzos, C. (2008). Nanoliposomes and their applications in food nanotechnology. Journal of Liposome Research, 18, 309–327. https://doi.org/10.1080/08982100802465941

Nakhaei, P., Margiana, R., Bokov, D. O., Abdelbasset, W. K., Jadidi Kouhbanani, M. A., Varma, R. S., Marofi, F., Jarahian, M., & Beheshtkhoo, N. (2021). Liposomes: Structure, biomedical applications, and stability parameters with emphasis on cholesterol. Frontiers in Bioengineering and Biotechnology, 9, 705886–705909. https://doi.org/10.3389/fbioe.2021.705886

Noble, G. T., Stefanick, J. F., Ashley, J. D., Kiziltepe, T., & Bilgicer, B. (2014). Ligand-targeted liposome design: Challenges and fundamental considerations. Trends in Biotechnology, 32, 32–45. https://doi.org/10.1016/j.tibtech.2013.09.007

Nsairat, H., Khater, D., Sayed, U., Odeh, F., Bawab, A., & Alshaer, W. (2022). Liposomes: Structure, composition, types, and clinical applications. Heliyon, 8, e09394. https://doi.org/10.1016/j.heliyon.2022.e09394

Pedersen, U. R., Leidy, C., Westh, P., & Peters, G. H. (2006). The effect of calcium on the properties of charged phospholipid bilayers. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1758, 573–582. https://doi.org/10.1016/j.bbamem.2006.03.035

Peter, M. F., & Hubert, D. H. W. (2005). Cryoelectron microscopy of liposomes. Methods in Enzymology, 391, 431–448. https://doi.org/10.1016/S0076-6879(05)91024-0

Raval, N., Maheshwari, R., Kalyane, D., Youngren-Ortiz, S. R., Chougule, M. B., & Tekade, R. K. (2019). Importance of physicochemical characterization of nanoparticles in pharmaceutical product development. In Basic fundamentals of drug delivery. Academic Press. https://doi.org/10.1016/B978-0-12-817909-3.00010-8

Sapei, L., Savitri, E., Jati, I. R. A., Indrawanto, R., Darsono, H. E., Anggraeni, Y., & Sumampouw, C. (2024). Stability and kinetic study of vitamin C containing hydrogenated and middle-chain triglyceride coconut oil-based double emulsion. International Journal of Technology, 15(6), 1982–1993. https://doi.org/10.14716/ijtech.v15i6.6371

Shade, C. W. (2016). Liposomes as advanced delivery systems for nutraceuticals. Integrative Medicine, 15(1), 33–36.

Shofinita, D., Harimawan, A., Almaishya, N., Dewi, A. M., Thamleonard, J., & Achmadi, A. B. (2025). Enhancing viability of probiotic by microencapsulation: A case study in ice cream. International Journal of Technology, 16(4), 1337–1347. https://doi.org/10.14716/ijtech.v16i4.6886

Skrinda-Melne, M., Locs, J., Grava, A., & Dubnika, A. (2024). Calcium phosphates enhanced with liposomes: The future of bone regeneration and drug delivery. Journal of Liposome Research, 34(3), 507–522. https://doi.org/10.1080/08982104.2023.2285973

Strange, R. C., Shipman, K. E., & Ramachandran, S. (2015). Metabolic syndrome: A review of the role of vitamin D in mediating susceptibility and outcome. World Journal of Diabetes, 6, 896–911. https://doi.org/10.4239/wjd.v6.i7.896

Szcze?, A., & Sternik, D. (2016). Properties of calcium carbonate precipitated in the presence of DPPC liposomes modified with the phospholipase A2. Journal of Thermal Analysis and Calorimetry, 123, 2357–2365. https://doi.org/10.1007/s10973-015-4958-5

Tenchov, R., Bird, R., Curtze, A. E., & Zhou, Q. (2021). Lipid nanoparticles—from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano, 15, 16982–17015. https://doi.org/10.1021/acsnano.1c04996

Tinsley, G. M., Harty, P. S., Stratton, M. T., Siedler, M. R., & Rodriguez, C. (2022). Liposomal mineral absorption: A randomized crossover trial. Nutrients, 14, 3321–3337. https://doi.org/10.3390/nu14163321

US Preventive Services Task Force, Mangione, C. M., Barry, M. J., Nicholson, W. K., Cabana, M., Chelmow, D., Coker, T. R., Davis, E. M., Donahue, K. E., Doubeni, C. A., Jaen, C. R., Kubik, M., Li, L., Ogedegbe, G., Pbert, L., Ruiz, J. M., Stevermer, J., & Wong, J. B. (2022). Vitamin, mineral, and multivitamin supplementation to prevent cardiovascular disease and cancer: US Preventive Services Task Force recommendation statement. JAMA, 327, 2326–2333. https://doi.org/10.1001/jama.2022.8970

Vakilinezhad, M. A., Amini, A., Akbari-Javar, H., Baha’addini Beigi Zarandi, B. F., Montaseri, H., & Dinarvand, R. (2018). Nicotinamide-loaded functionalized solid lipid nanoparticles improve cognition in Alzheimer’s disease animal model by reducing tau hyperphosphorylation. DARU Journal of Pharmaceutical Sciences, 26, 165–177. https://doi.org/10.1007/s40199-018-0221-5

Venegas-García, D. J., Wu, L. D., & Cruz-Guzmán, M. D. L. (2024). Aloe vera mucilage as a sustainable biopolymer flocculant for efficient arsenate anion removal from water. RSC Sustainability, 2(9), 2632–2643. https://doi.org/10.1039/d4su00170b

Wibowo, A., Jatmiko, A., Ananda, M. B., Rachmawati, S. A., Ardy, H., Aimon, A. H., & Iskandar, F. (2021). Facile fabrication of polyelectrolyte complex nanoparticles based on chitosan–poly(2-acrylamido-2-methylpropane sulfonic acid) as a potential drug carrier material. International Journal of Technology, 12(3), 561–570. https://doi.org/10.14716/ijtech.v12i3.4193

Yang, K., Tran, K., & Salvati, A. (2023). Tuning liposome stability in biological environments and intracellular drug release kinetics. Biomolecules, 13, 59. https://doi.org/10.3390/biom13010059

Zhao, L., Temelli, F., & Chen, L. (2017). Encapsulation of anthocyanin in liposomes using supercritical carbon dioxide: Effects of anthocyanin and sterol concentrations. Journal of Functional Foods, 34, 159–167. https://doi.org/10.1016/j.jff.2017.04.021