• International Journal of Technology (IJTech)
  • Vol 17, No 1 (2026)

Semi-Analytical Approach to Analyze the Hull Girder Ultimate Strength Considering the Influence of Side Hopper

Semi-Analytical Approach to Analyze the Hull Girder Ultimate Strength Considering the Influence of Side Hopper

Title: Semi-Analytical Approach to Analyze the Hull Girder Ultimate Strength Considering the Influence of Side Hopper
Muhammad Zubair Muis Alie, Ahmad Fauzan Zakki, Dony Setyawan, Tuswan Tuswan, Muslimat Fathanah Rasidi, Ocid Mursid

Corresponding email:


Cite this article as:
Alie, M. Z. M., Zakki, A. F., Setyawan, D., Tuswan, Rasidi, M. F., & Mursid, O. (2026). Semi-analytical approach to analyze the hull girder ultimate strength considering the influence of side hopper. International Journal of Technology, 17 (1), 205–218


13
Downloads
Muhammad Zubair Muis Alie Department of Ocean Engineering, Engineering Faculty, Hasanuddin University, Makassar, 92171, Indonesia
Ahmad Fauzan Zakki Department of Naval Engineering, Engineering Faculty, Diponegoro University, Semarang, 50275, Indonesia
Dony Setyawan Department Faculty of Marine Technology, Institut Technologi Sepuluh Nopember, Surabaya, 60111, Indonesia
Tuswan Tuswan Department of Naval Engineering, Engineering Faculty, Diponegoro University, Semarang, 50275, Indonesia
Muslimat Fathanah Rasidi Department of Naval Architecture, Engineering Faculty, Hasanuddin University, Makassar, 92171, Indonesia
Ocid Mursid Department Of Naval Architecture, Ocean and Marine Engineering, University of Strathclyde, Glasgow, G1 1XQ, United Kingdom
Email to Corresponding Author

Abstract
Semi-Analytical Approach to Analyze the Hull Girder Ultimate Strength Considering the Influence of Side Hopper

A bilge hopper is one of the sections on ship bottom construction. The side hopper has an angle required in the national classification at the bilge hopper. This angle depends on the type of the ship’s hull, whether the ship has a single or double hull construction. This study aims to assess the impact of the side hopper angle at the bilge section on the strength of the ship structure. The bulk carrier and oil tanker are considered as the ship’s objects. The cross sections of the bulk carrier and oil tanker are assessed. It is thought that the cross-section of those ships remained plane throughout the gradual collapse. One frame space, measured along the length of the ship from one web frame to another, is considered for basic computations and analysis. The slope angle of the side hopper analysis is based on national classification regulations, which specify a slope angle of 35°. The semi-analytical approach is adopted to evaluate the ultimate ship hull girder strength. In this study, we compare and discuss the results obtained from the ultimate strength considering the influence of side hopper angle for oil tanker and bulk carrier between the existing condition and local classification.

Bulk carrier, Cross-section, Oil tanker, Semi-analytical, Ultimate strength

Supplementary Material
FilenameDescription
R2-ME-8010-20251115210114.pdf Supplementary Material
References

Akbar, M., Ramadhan, M. J., Izzuddin, M., Gunawan, L., Sasongko, R. A., Kusni, M., & Curiel-Sosa, J. L. (2022). Evaluation of piezoaeroelastic energy harvesting potential of a jet transport aircraft wing with multiphase composite using iterative finite element method. International Journal of Technology, 13 (4), 803–815. https://doi.org/10.14716/ijtech.v13i4.5468

Babazadeh, A., & Khedmati, M. R. (2021). Progressive collapse analysis of a bulk carrier hull girder under longitudinal vertical bending moment considering cracking damage. Ocean Engineering, 242, 110140. https://doi.org/10.1016/j.oceaneng.2021.110140

Bai, L., Shen, R., Yan, Q., Wang, L., Miao, R., & Zhao, Y. (2021). Progressive-models method for evaluating interactive stability of steel box girders for bridges– extension of progressive collapse method in ship structures. Structures, 33, 3848–3861. https://doi.org/10.1016/j.istruc.2021.06.061

Barsotti, B., Battini, C., Gaiotti, M., Rizzo, C. M., & Vergassola, G. (2025). Experimental and numerical assessment of ultimate strength of a transversally loaded thin-walled deck structure. Marine Structures, 103, 103793. https://doi.org/10.1016/j.marstruc.2025.103793

Biro Klasifikasi Indonesia. (2024). Rules for hull 2024.

Campanile, A., Piscopo, V., & Scamardella, A. (2017). Incidence of load combination methods on time-variant oil tanker reliability in intact conditions. Ocean Engineering, 130, 371–384. https://doi.org/10.1016/j.oceaneng.2016.12.005

Chen, B.-Q., Liu, B., & Guedes-Soares, C. (2022). Experimental and numerical investigation on a double hull structure subject to collision. Ocean Engineering, 256, 111437. https://doi.org/https://doi.org/10.1016/j.oceaneng.2022.111437

Cui, H., Hu, R., Chen, Z., & Zheng, C. (2024). Research on ultimate strength of hull girder considering initial imperfections under monotonic and cyclic bending moments a bulk carrier case. Ocean Engineering, 311, 118862. https://doi.org/10.1016/j.oceaneng.2024.118862

Deng, H., Yuan, T., Gan, J., Liu, B., & Wu, W. (2022). Experimental and numerical investigations on the collapse behaviour of box type hull girder subjected to cyclic ultimate bending moment. Thin-Walled Structures, 175, 109204. https://doi.org/https://doi.org/10.1016/j.tws.2022.109204

Downes, J., Tayyar, G., Kvan, I., & Choung, J. (2017). A new procedure for load-shortening and elongation data for progressive collapse method. International Journal of Naval Architecture and Ocean Engineering, 9 (6), 705–719. https://doi.org/10.1016/j.ijnaoe.2016.10.005

Estefen, S. F., Chujutalli, J. H., & Guedes-Soares, C. (2016). Influence of geometric imperfections on the ultimate strength of the double bottom of a suezmax tanker. Engineering Structures, 127, 287–303. https://doi.org/https://doi.org/10.1016/j.engstruct.2016.08.036

Feng, L., Ai, F., Wang, C., Yu, J., & Cui, Z. (2025). Residual ultimate strength of hull plates under irregular pitting corrosion: An innovative numerical simulation approach and experimental validation. Ocean Engineering, 318, 120092. https://doi.org/https://doi.org/10.1016/j.oceaneng.2024.120092
Georgiadis, D. G., & Samuelides, M. S. (2021). Stochastic geometric imperfections of plate elements and their impact on the probabilistic ultimate strength assessment of plates and hull-girders. Marine Structures, 76, 102920. https://doi.org/10.1016/j.marstruc.2020.102920

Georgiadis, D., Samuelides, E., & Straub, D. (2023). A bayesian analysis for the quantification of strength model uncertainty factor of ship structures in ultimate limit state. Marine Structures, 92, 103495. https://doi.org/10.1016/j.marstruc.2023.103495

Hamza, S., Ahmadizadeh, M., Dashtizadeh, M., & Chitt, M. (2023). Modification of horizontal wind turbine blade: A finite element analysis. International Journal of Technology, 14 (1), 5–14. https://doi.org/10.14716/ijtech.v14i1.5255

Jagite, G., Bigot, F., Malenica, S., Derbanne, Q., Sourne, H. L., & Cartraud, P. (2022). Dynamic ultimate strength of an ultra-large container ship subjected to realistic loading scenarios. Marine Structures, 84, 103197. https://doi.org/https://doi.org/10.1016/j.marstruc.2022.103197

Kadir, A. M., Setyawan, A., Purnamasari, F. N., Pramana, N., Muhammad, Satriya, I. A. A., Wirawan, R., & Sampurno, B. (2025). Design and analysis of floater structures using composite material in 19 seaters aircraft. International Journal of Technology, 16 (1), 112–123. https://doi.org/https://doi.org/10.14716/ijtech.v16i1.6326

Kholil, A., Kiswanto, G., Al Farisi, A., & Istiyanto, J. (2023). Finite element analysis of lattice structure model with control volume manufactured using additive manufacturing. International Journal of Technology, 14 (7), 1428–1437. https://doi.org/https://doi.org/10.14716/ijtech.v14i7.6660

Kuznecovs, A., Ringsberg, J. W., Johnson, E., & Y, Y. (2020). Ultimate limit state analysis of a double-hull tanker subjected to biaxial bending in intact and collision-damaged conditions. Ocean Engineering, 209, 107519. https://doi.org/10.1016/j.oceaneng.2020.107519

Li, D., & Chen, Z. (2025). Generalized closed-form formulae for characterizing the ultimate strength envelope of ship stiffened panels subjected to combined biaxial compression and lateral pressure. Marine Structures, 102, 103789. https://doi.org/https://doi.org/10.1016/j.marstruc.2025.103789

Li, D., Chen, Z., & Chen, X. (2023). Numerical investigation on the ultimate strength behaviour and assessment of continuous hull plate under combined biaxial cyclic loads and lateral pressure. Marine Structures, 89, 103408. https://doi.org/https://doi.org/10.1016/j.marstruc.2023.103408

Li, S., & Kim, D. K. (2022). A comparison of numerical methods for damage index based residual ultimate limit state assessment of grounded ship hulls. Thin-Walled Structures, 172, 108854. https://doi.org/https://doi.org/10.1016/j.tws.2021.108854

Li, S., Kim, D. K., & Benson, S. (2021). A probabilistic approach to assess the computational uncertainty of ultimate strength of hull girders. Reliability Engineering and System Safety, 213, 107688. https://doi.org/https://doi.org/10.1016/j.ress.2021.107688

Li, Z., Lan, S., Xia, T., & Cui, H. (2025). Ultimate strength research on a container ship under pure bending, torsion and bending-torsion combination considering initial imperfections. Ocean Engineering, 326, 120783. https://doi.org/https://doi.org/10.1016/j.oceaneng.2025.120783

Liu, B., Villavicencio, R., Pedersen, P. T., & Soares, C. G. (2020). Ultimate strength assessment of ship hull structures subjected to cyclic bending moments. Ocean Engineering, 215, 107685. https://doi.org/10.1016/j.oceaneng.2020.107685

Liu, B., Zhang, H., Wang, Y., & Guedes Soares, C. (2021). Analysis of structural crashworthiness of double-hull ships in collision and grounding. Marine Structures, 76, 102898. https://doi.org/10.1016/j.marstruc.2020.102898

Ma, H., Wang, Q., & Wang, D. (2022). Scaling characteristics of the hull girder’s ultimate strength subjected to the combined hogging moment and bottom lateral pressure: An empirically modified scaling criterion. Ocean Engineering, 257, 111520. https://doi.org/10.1016/j.oceaneng.2022.111520

Prabu-Chelladurai, S. K., Dash, A. K., Nagarajan, V., & Sha, O. P. (2023). Longitudinal strength of high block coefficient merchant ships in irregular waves. Ocean Engineering, 283, 115066. https://doi.org/https://doi.org/10.1016/j.oceaneng.2023.115066

Quispe, J. P., Estefen, S. F., Souza, M. I. L. d., Chujutalli, J. H., Aamante, D. d. A. M., & Gurova, T. (2022). Numerical and experimental analyses of ultimate longitudinal strength of a small-scale hull box girder. Marine Structures, 85, 103273. https://doi.org/10.1016/j.marstruc.2022.103273

Shi, G.-J., & Gao, D.-W. (2021). Model experiment of large superstructures’ influence on hull girder ultimate strength for cruise ships. Ocean Engineering, 222, 108626. https://doi.org/10.1016/j.oceaneng.2021.108626

Song, S., Ehlers, S., Polach, F. v. B. u. p., & Braun, M. (2025). Ultra-low cycle fatigue of ship hull structure: An alternately cyclically loaded four-point bending test of a large box girder. Marine Structures, 100, 103732. https://doi.org/https://doi.org/10.1016/j.marstruc.2024.103732

Wang, Q., Wang, C., Wu, J., & Wang, D. (2020). Experimental and numerical investigations of the ultimate torsional strength of an ultra large container ship. Marine Structures, 70, 102695. https://doi.org/https://doi.org/10.1016/j.marstruc.2019.102695

Wang, Q., & Wang, D. (2020). Scaling characteristics of hull girder’s ultimate strength and failure behaviors. Ocean Engineering, 212, 107595. https://doi.org/10.1016/j.oceaneng.2020.107595

Wang, X., & Gu, X. (2021). Risk-based ultimate strength design criteria for very large floating structure. Ocean Engineering, 223, 108627. https://doi.org/10.1016/j.oceaneng.2021.108627

Wang, Y., Wei, P., Wang, Q., Dai, Z., & Wang, D. (2024). A new similarity method for the ultimate strength of box girders subjected to the combined load of bending and lateral pressure. Ocean Engineering, 313, 119270. https://doi.org/10.1016/j.oceaneng.2024.119270

Wang, Y., Zhang, M., Wei, P., & Wang, D. (2025). Buckling strength driven similarity method for hull girders under combined loads of bending and torsion. Thin-Walled Structures, 216, 113689. https://doi.org/10.1016/j.tws.2025.113689

Wang, Z., Kong, X., & Wu, W. (2023). Empirical formula to assess ultimate strength of side shell on passenger ship under combined axial and shear load based on experimental and numerical analysis. Ocean Engineering, 288, 116149. https://doi.org/10.1016/j.oceaneng.2023.116149

Xu, M. C., Song, Z. J., & Pan, J. (2017). Study on influence of nonlinear finite element method models on ultimate bending moment for hull girder. Thin-Walled Structures, 119, 282–295. https://doi.org/10.1016/j.tws.2017.06.009

Yao, T., & Nikolov, P. I. (1992). Progressive collapse analysis of a ship’s hull girder under longitudinal bending (2nd report). Journal of the Society of Naval Architects of Japan, 172, 437–446. https://api.semanticscholar.org/CorpusID:113233328

Zhang, Y., Guo, J., Xu, J., Li, S., & Yang, J. (2021). Study on the unequivalence between stiffness loss and strength loss of damaged hull girder. Ocean Engineering, 229, 108986. https://doi.org/10.1016/j.oceaneng.2021.108986

Zhao, N., Wang, Y., Zhang, M., & Guedes Soares, C. (2022). Experimental and numerical investigation on the ultimate strength of a ship hull girder model with deck openings. Marine Structures, 83, 103175. https://doi.org/10.1016/j.marstruc.2022.103175

Zhu, Z., Ren, H., Incecik, A., Lin, T., Li, C., & Zhou, X. (2024). A novel method for determining the neutral axis position of the asymmetric cross section and its application in the simplified progressive collapse method for damaged ships. Ocean Engineering, 301, 117390. https://doi.org/10.1016/j.oceaneng.2024.117390