Published at : 28 Jan 2026
Volume : IJtech
Vol 17, No 1 (2026)
DOI : https://doi.org/10.14716/ijtech.v17i1.7891
| Deep Kothadiya | U&PU Patel Department of Computer Engineering, Faculty of Technology (FTE), Chandubhai S. Patel Institute of Technology (CSPIT), Charotar University of Science and Technology (CHARUSAT), Changa, 38842 |
| Dulari Gajjar | U&PU Patel Department of Computer Engineering, Faculty of Technology (FTE), Chandubhai S. Patel Institute of Technology (CSPIT), Charotar University of Science and Technology (CHARUSAT), Changa, 38842 |
| Abeer Rashad Mirdad | Artifical Intelligence & Data Analytics Lab. College of Computer and Information Sciences Prince Sultan University Riyadh, 11586 Saudi Arabia |
| Fatima Alshannaq | Artifical Intelligence & Data Analytics Lab. College of Computer and Information Sciences Prince Sultan University Riyadh, 11586 Saudi Arabia |
| Tanzila Saba | Artifical Intelligence & Data Analytics Lab. College of Computer and Information Sciences Prince Sultan University Riyadh, 11586 Saudi Arabia |
Alzheimer’s disease (AD) serves as a rising global health concern further complicated by current limitations early diagnostic accuracy using standard imaging methods. This proposal will investigate an enhanced ensemble deep learning framework that integrates U-Net medical image segmentation capacity to Graph Attention Networks in order to improve the diagnosis of varying levels of Alzheimer’s disease from MRI scans. U-Net allows for the extraction of spatial compressions and urges the GAT to accurate measure fluctuations potently stated through relational connections between areas of the brain in order to measure and assess the change of the structural and relational occurrences in the progression of Alzheimer’s disease. The simulation of the proposed study will use the OASIS-1 benchmark dataset, which includes 86,000 MRI scans from patients with varying levels of dementia. The simulation study will also deploy data augmentation strategies to mitigate the class imbalance specific to the dataset. Sequentially, the proposed combined study will focus on improving the recognition rate in segmented data compared to more traditional forms of convolutional learning. The experiments in this study will yield remarkable performance results incorporating an accuracy of 96%, which will outperform standards and current models accounting for CNN, VGG19, EfficientNet, and those developed by Vision Transformer. The simulation of this proposed study will provide spatial and relational learning processes to further improve the performance of the diagnosis and classification of the stages of Alzheimer’s disease as early on as possible.
Alzheimer detection; Graph attention network; Healthcare; Health risks; UNET
Abunadi,
I. (2022). Deep and hybrid learning of mri diagnosis for early detection of the
progression stages in alzheimer’s disease. Connection Science, 34 (1),
2395–2430. https://doi.org/10.1080/09540091.2022.2123450
Albishri, A. A., Shah, S. H., Kang, S. S., & Lee, Y.
(2022). Am-unet:
Automated mini 3d end-to-end u-net based network for brain claustrum
segmentation. Multimedia Tools and Applications, 81 (25), 36171–36194. https://doi.org/10.1007/s11042-021-11568-7
Ali,
H. (2025). A meta-review of computational intelligence techniques for early
autism disorder diagnosis. International Journal of Theoretical and Applied
Computational Intelligence, 2025, 1–21. https://doi.org/https://doi.org/10.65278/IJTACI.2025.1
Aliyu,
B. S., Isuwa, J., Abdulrahim, A., Abdullsahi, M., & Hassan, I. H. (2025).
Enhanced feature selection for imbalanced microarray cancer gene classification
using chaotic salp swarm algorithm. International Journal of Theoretical and
Applied Computational Intelligence, 2025, 258–283. https://doi.org/https://doi.org/10.65278/IJTACI.2025.16
Al-Selwi,
H. F., Aziz, A. A., Abas, F. B., Kayani, A., & Noor, N. M. (2023).
Attention based spatial-temporal gcn with kalman filter for traffic flow
prediction. International Journal of Technology, 14 (6), 1299. https://doi.org/10.14716/ijtech.v14i6.6646
Ara
?ujo, T., Teixeira, J. P., & Rodrigues, P. M. (2022). Smart-data-driven
system for Alzheimer disease detection through electroencephalographic signals.
Bioengineering, 9 (4), 141. https://doi.org/10.3390/bioengineering9040141
Ayub,
N., Shah, S. Z. A., & Assad, D. A. (2024). Leveraging deep learning for
precise alzheimer’s disease detection via mri image segmentation: A technical
study [SSRN preprint]. https://doi.org/10.2139/ssrn.4974345
Bootun,
D., Auzine, M. M., Ayesha, N., Idris, S., Saba, T., & Khan, M. H. M.
(2025). Adamaex—alzheimer’s disease classification via attention-enhanced
autoencoders and xai. Egyptian Informatics Journal, 30, 100688.
Chandra,
A., Verma, S., Raghuvanshi, A. S., & Bodhey, N. K. (2023). Pccs-rau-net:
Automated parcellated corpus callosum segmentation from brain mri images using
modified residual attention u-net. Biocybernetics and Biomedical Engineering,
43 (2), 403–427. https://doi.org/10.1016/j.bbe.2023.02.003
Chen, K., Weng, Y., Hosseini, A. A., Dening, T., Zuo, G.,
& Zhang, Y. (2024). A
comparative study of gnn and mlp based machine learning for the diagnosis of
alzheimer’s disease involving data synthesis. Neural Networks, 169, 442–452. https://doi.org/10.1016/j.neunet.2023.10.040
Duarte,
K. T. N., Sidhu, A. S., Barros, M. C., Gobbi, D. G., McCreary, C. R., Saad, F.,
Camicioli, R., Smith, E. E., Bento, M. P., & Frayne, R. (2024). Multi-stage
semi-supervised learning enhances white matter hyperintensity segmentation.
Frontiers in Computational Neuroscience, 18, 1487877. https://doi.org/10.3389/fncom.2024.1487877
Ebrahimi,
A., Luo, S., & Chiong, R. (2021). Deep sequence modelling for alzheimer’s
disease detection using mri. Computers in Biology and Medicine, 134, 104537. https://doi.org/10.1016/j.compbiomed.2021.104537
Firdos, S. M., Mehack, Z., Muskan, S. A., BibiNadeefa,
A., & Kamepalli, S. (2024). Enhancing
alzheimer’s disease prediction through deep learning models: A comparative
study of googlenet, lenet, and unet. Proceedings of the First International
Conference on Innovations in Communications, Electrical and Computer
Engineering, 1–7. https://doi.org/10.1109/ICICEC62498.2024.10808306
Gajjar,
D. B., Faldu, P., Kothadiya, D. R., Chaudhari, A. P., & Bhatt, N. M.
(2025). Devitc: Deep-vision transformer to recognize originality of currency.
Computer, 58 (5), 48–56. https://doi.org/10.1109/MC.2024.3514151
Hasan,
M. E., & Wagler, A. (2024). A novel deep learning graph attention network
for alzheimer’s disease image segmentation. Healthcare Analytics, 5, 100310. https://doi.org/10.1016/j.health.2024.100310
Hazarika,
R. A., Maji, A. K., Syiem, R., Sur, S. N., & Kandar, D. (2022). Hippocampus
segmentation using u-net convolutional network from brain magnetic resonance
imaging. Journal of Digital Imaging, 35 (4), 893–909. https://doi.org/10.1007/s10278-022-00613-y
Helaly,
H. A., Badawy, M., & Haikal, A. Y. (2022). Deep learning approach for early
detection of alzheimer’s disease. Cognitive Computation, 14 (5), 1711–1727. https://doi.org/10.1007/s12559-021-09946-2
Ishtiaq,
U., Abdullah, E. R. M. F., Ishtiaque, Z., Nayer, F. K., Idris, S., &
Rehman, A. (2025). Lung cancer classification via entropy-driven feature
selection and deep learning architectures on multi-modal imaging data.
International Journal of Technology.
Kalluvila,
A. (2023). Super-resolution of brain mri via u-net architecture. International
Journal of Advanced Computer Science and Applications, 14 (5). Kamal, M. S.,
& Nimmy, S. F. (2024). Interpretable transformers for alzheimer disease
diagnosis on multi-modal data. Proceedings of the International Joint
Conference on Neural Networks, 1–8. https://doi.org/10.1109/IJCNN60899.2024.10651416
Karimi,
M., Karimi, Z., Khosravi, M., Delaram, Z., Dehsheikhim, M. H., Najafabadi, S.
A., & Tavakoli, N. (2025). Feature selection methods in big medical
databases: A comprehensive survey. International Journal of Theoretical and
Applied Computational Intelligence, 2025, 181–209. https://doi.org/https://doi.org/10.65278/IJTACI.2025.21
Khan, A., Akbar, S., Alghanim, A., Hassan, S. A., &
Ayesha, N. (2023). Automated
hybrid model for detection and classification of brain tumor. Proceedings of
the Sixth International Conference of Women in Data Science at Prince Sultan
University, 79–84.
Kothadiya,
D., Bhatt, C., Soni, D., Gadhe, K., Patel, S., Bruno, A., & Mazzeo, P. L.
(2023). Enhancing fingerprint liveness detection accuracy using deep learning:
A comprehensive study and novel approach. Journal of Imaging, 9 (8), 158.
https: //doi.org/10.3390/jimaging9080158
Kothadiya,
D., Rehman, A., AlGhofaily, B., Bhatt, C., Ayesha, N., & Saba, T. (2025).
Vgx: Vgg19-based gradient explainer interpretable architecture for brain tumor
detection in microscopy magnetic resonance imaging. Microscopy Research and
Technique, 88 (5), 1544–1554. https://doi.org/10.1002/jemt.24809
Kumari, R., Kohli, A., Sunil, A., Dadhich, A., Das, S.,
& Singh, R. K. (2024). Empirical
evaluation of deep learning architectures in the early detection of alzheimer’s
disease through mri data analysis. Proceedings of the International Conference
on Intelligent Systems and New Applications, 1. https://doi.org/10.58190/icisna.2024.85
Lee, B., Yamanakkanavar, N., & Choi, J. Y. (2020). Automatic segmentation of brain mri using a novel patch-wise u-net
deep architecture. PLOS ONE, 15 (8), e0236493. https://doi.org/10.1371/journal.pone.0236493
Li, M., Magnusson, M., van Eimeren, T., & Ellingsen,
L. M. (2024). Region-based
u-net for accelerated training and enhanced precision in deep brain
segmentation. arXiv preprint. https://doi.org/10.48550/ARXIV.2403.09414
Li,
Z., Yao, T., Kanakaraj, P., Gao, C., Bao, S., Zuo, L., Kim, M. E., Newlin, N.
R., Rudravaram, G., Khairi, N. M., Huo, Y., Schilling, K. G., Kukull, W. A.,
Toga, A. W., Archer, D. B., Hohman, T. J., & Landman, B. A. (2024). Multi-modality
conditioned variational u-net for field-of-view extension in brain diffusion
mri. arXiv preprint. https://doi.org/10.48550/ARXIV.2409.13846
Liu, S., Masurkar, A. V., Rusinek, H., Chen, J., Zhang,
B., Zhu, W., Fernandez-Granda, C., & Razavian, N. (2022). Generalizable deep learning model for early alzheimer’s disease detection
from structural mris. Scientific Reports, 12 (1), 17106. https://doi.org/10.1038/s41598-022-20674-x
Manjupriya, R., & Leema, A. A. (2025). Efficient epileptic seizure detection with optimal channel selection
and fixuppactbi-lstm deep learning model. International Journal of Technology, 16
(2), 706. https://doi.org/10.14716/ijtech.v16i2.7333
Minh,
T. C., Quoc, N. K., Vinh, P. C., Phu, D. N., Chi, V. X., & Tan, H. M.
(2024). Uggnet: Bridging u-net and vgg for advanced breast cancer diagnosis.
arXiv preprint. https://doi.org/10.48550/ARXIV.2401.03173
Mohammed,
H., Majeed, H., Al-mafrachi, B. A. R., Al-Khaffaf, M. S., & Saad, A.
(2025). A novel deep learning approach for classification of abnormal teeth in
panoramic x-rays. International Journal of Theoretical & Applied
Computational Intelligence, 22–34.
Nugroho,
H. A., Subiantoro, A., & Kusumoputro, B. (2023). Performance analysis of
ensemble deep learning narx system for estimating the earthquake occurrences in
the subduction zone of java island. International Journal of Technology, 14
(7), 1517. https://doi.org/10.14716/ijtech.v14i7.6702
Orouskhani,
M., Zhu, C., Rostamian, S., ShomalZadeh, F., Shafiei, M., & Orouskhani, Y.
(2022). Alzheimer’s disease detection from structural mri using conditional
deep triplet network. Neuroscience Informatics, 2 (4), 100066. https://doi.org/10.1016/j.neuri.2022.100066
Pandey, P. K., Pruthi, J., Alzahrani, S., Verma, A.,
& Zohra, B. (2024). Enhancing
healthcare recommendation: Transfer learning in deep convolutional neural
networks for Alzheimer disease detection. Frontiers in Medicine, 11, 1445325. https://doi.org/10.3389/fmed.2024.1445325
Praschl, C., Zopf, L. M., Kiemeyer, E., Langthallner, I.,
Ritzberger, D., Slowak, A., Weigl, M., Blueml, V., Nesic, N., Stojmenovic, M.,
Kniewallner, K. M., Aigner, L., Winkler, S., & Walter, A. (2023). U-net based vessel segmentation for murine brains with small micro-magnetic
resonance imaging reference datasets. PLOS ONE, 18 (10), e0291946. https://doi.org/10.1371/journal.pone.0291946
Rehman,
A. (2023). Brain stroke prediction through deep learning techniques with adasyn
strategy. Proceedings of the 16th International Conference on Developments in
eSystems Engineering, 679–684.
Shukla, A., Tiwari, R., & Tiwari, S. (2023). Review on alzheimer disease detection methods: Automatic pipelines
and machine learning techniques. Sci, 5 (1), 13. https://doi.org/10.3390/sci5010013
Sun, N., Yuan, Y., Zhang, L., & Han, Z. (2024). Convolutional neural network image segmentation of alzheimer’s
disease based on multi-order 3d u-net. In A. Tall ?on-Ballesteros, E. Cort
?es-Ancos, & D. L ?opez-Garc ??a (Eds.), Frontiers in artificial
intelligence and applications. IOS Press.
Sun,
X., & Huo, X. (2022). Word-level and pinyin-level based chinese short text
classification. IEEE Access, 10, 125552–125563.
Udayaraju,
P., & Jeyanthi, P. (2024). Advances in alzheimer’s detection: A
multi-learning fusion approach using choroidal neovascularization analysis.
Proceedings of the International Conference on IoT Based Control Networks and
Intelligent Systems, 1497–1503. https://doi.org/10.1109/ICICNIS64247.2024.10823111
Vaiyapuri,
T., & Sbai, Z. (2025). Bayesian optimized boosted ensemble models for hr
analytics adopting green human resource management practices. International
Journal of Technology, 16 (2), 561. https://doi.org/10.14716/ijtech.v16i2.7277
Xie, L., Yushkevich, P. A., Das, S. R., Wolk, D. A.,
& Gibson, E. (2024). Utilizing
advanced artificial intelligence for automated detection and segmentation of
amyloid-related imaging abnormality (aria). Alzheimer’s & Dementia, 20 (S9), e093974.
Xun, S., Zhang, Y., Duan, S., Wang, M., Chen, J., Tong,
T., Gao, Q., Lam, C., Hu, M., & Tan, T. (2024). Arga-unet: Advanced u-net segmentation model using residual
grouped convolution and attention mechanism for brain tumor mri image
segmentation. Virtual Reality & Intelligent
Hardware, 6 (3), 203–216. https://doi.org/10.1016/j.vrih.2023.05.001
Yoon, H., Park, M., Yeom, S., Kirkcaldie, M. T. K., Summons, P., & Lee, S. H. (2021). Automatic detection of amyloid beta plaques in somatosensory cortex of an alzheimer’s disease mouse using deep learning. IEEE Access, 9, 161926–161936. https://doi.org/10.1109/ACCESS.2021.3132401
Zhang, Q., Yuan, Q., Lv, P., Zhang, M., & Lv, L. (2022). Research on medical text classification based on improved capsule network. Electronics, 11 (14), 2229. https://doi.org/10.3390/electronics11142229