• International Journal of Technology (IJTech)
  • Vol 16, No 6 (2025)

Structure, Density and Hardness of Spark Plasma Sintered Fe-Mn Alloys

Structure, Density and Hardness of Spark Plasma Sintered Fe-Mn Alloys

Title: Structure, Density and Hardness of Spark Plasma Sintered Fe-Mn Alloys
Sovian Aritonang, Andy Marjono Putranto, Resetiana Dwi Desiati, Bambang Hermanto, Michael Tulus Samuel, Andi Suhandi, Oman Zuas, Tony Wang, Maykel T.E. Manawan, Toto Sudiro

Corresponding email:


Cite this article as:
Aritonang, S., Putranto, A., Desiati, R., Hermanto, B., Samuel, M., Suhandi, A., Zuas, O., Wang, T., Manawan, M., & Sudiro, T. (2025). Structure, density and hardness of spark plasma sintered fe-mn alloys. International Journal of Technology, 16 (6), 1894–1910


17
Downloads
Sovian Aritonang Faculty of Military Mathematics and Natural Sciences, Indonesia Defense University, Bogor 16810, Indonesia
Andy Marjono Putranto 1. Faculty of Military Mathematics and Natural Sciences, Indonesia Defense University, Bogor 16810, Indonesia; 2. Organization and Human Resources Bureau, National Research and Innovation Agency, Jak
Resetiana Dwi Desiati Research Center for Advanced Material, National Research and Innovation Agency, Tangerang Selatan 15314, Indonesia
Bambang Hermanto Research Center for Advanced Material, National Research and Innovation Agency, Tangerang Selatan 15314, Indonesia
Michael Tulus Samuel Faculty of Military Mathematics and Natural Sciences, Indonesia Defense University, Bogor 16810, Indonesia
Andi Suhandi Research Center for Advanced Material, National Research and Innovation Agency, Tangerang Selatan 15314, Indonesia;
Oman Zuas Research Center for Testing Technology and Standards, National Research and Innovation Agency, Tangerang Selatan 15314, Indonesia
Tony Wang Central Analytical Research Facility (CARF), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
Maykel T.E. Manawan 1. Faculty of Military Mathematics and Natural Sciences, Indonesia Defense University, Bogor 16810, Indonesia 2. Research Center for Advanced Material, National Research and Innovation Agency, Tanger
Toto Sudiro Research Center for Advanced Material, National Research and Innovation Agency, Tangerang Selatan 15314, Indonesia
Email to Corresponding Author

Abstract
Structure, Density and Hardness of Spark Plasma Sintered Fe-Mn Alloys

This study examines the effect of Mn content on phase evolution, density, and its correlation with the hardness of Fe-Mn alloys produced through mechanical milling followed by a spark plasma sintering technique. Alloys with Mn concentrations of 5, 10, 15, and 20 wt% were examined, revealing phase compositions primarily consisting of BCC (-Fe, ferrite), FCC (-FeMn, austenite), and HCP (-FeMn, martensite), with minor occurrences of MnO. The Mn content significantly affected the phase distribution, strain, crystallite size, and relative density. The evolution of phase structure—particularly the balance between hard BCC, HCP, and softer FCC—emerges as a critical factor in determining hardness. The alloy with 10 wt% Mn exhibited the highest hardness (595.34 Hv) despite not having the highest density, indicating that densification and the nature and proportion of constituent phases governed the mechanical properties. While ferrite and martensite enhance hardness, increasing the Mn content promotes the formation of a more ductile austenite phase, which offsets the strengthening effects and contributes to the observed decrease in hardness at higher Mn levels. These findings highlight the complex interplay between phase transformation, microstructure, and hardness in Fe-Mn alloy systems.

BCC; Density; Fe-Mn; Hardness; Spark plasma sintering

References

Abdul, A., Yang, M., Shimizu, T., & Furushima, T. (2021). Effect of grain misorientation and martensitic transformation on surface roughening behavior in thin austenitic stainless steel foils. International Journal of Technology, 12(6), 1161–1167. https://doi.org/10.14716/ijtech.v12i6.5180

Acet, M., Schneider, T., Gehrmann, B., & Wassermann, E. F. (1995). The magnetic aspects of the ?–? and ?–? martensitic transformations in Fe–Mn alloys. Journal de Physique IV, 5, C8-379–C8-384. https://doi.org/10.1051/jp4:1995856

Amaral, R., Santos, A. D., Sousa, J. A., & Lopes, A. B. (2017). The influence of microstructure on the mechanical behaviour of dual phase steels. In L. F. M. da Silva (Ed.), Materials design and applications (pp. 25–35). Springer International Publishing. https://doi.org/10.1007/978-3-319-50784-2_3

Anwar, M. S., Melinia, R. K., Pradisti, M. G., & Siradj, E. S. (2021). Effect of prior austenite grain-size on the annealing twin density and hardness in the austenitic stainless steel. International Journal of Technology, 12(6), 1149–1160. https://doi.org/10.14716/ijtech.v12i6.5190

Ayodele, O. O., Awotunde, M. A., Babalola, B. J., & Olubambi, P. A. (2021). Spark plasma sintering of CNT–NiAl nanocomposites—process parameter, densification mechanism, and grain analysis. Manufacturing Review, 8, 25. https://doi.org/10.1051/mfreview/2021023

Balagurov, A. M., Bobrikov, I. A., Pons, J., Cifre, J., Sun, L. Y., & Golovin, I. S. (2018). Structure of the Fe–Mn–Si alloys submitted to ? ? ? thermocycling. Materials Characterization, 141, 223–228. https://doi.org/10.1016/j.matchar.2018.04.052

Balbo, A., & Sciti, D. (2008). Spark plasma sintering and hot pressing of ZrB?–MoSi? ultra-high-temperature ceramics. Materials Science and Engineering: A, 475(1), 108–112. https://doi.org/10.1016/j.msea.2007.01.164

Cabibbo, M., Deodati, P., Libardi, S., Molinari, A., Montanari, R., & Ucciardello, N. (2008). Damping of FeMo alloys obtained from SPS sintering of nanostructured powders. Materials Science Forum, 604–605, 203–211. https://doi.org/10.4028/www.scientific.net/MSF.604-605.203

Cheary, R. W., Coelho, A. A., & Cline, J. P. (2004). Fundamental parameters line profile fitting in laboratory diffractometers. Journal of Research of the National Institute of Standards and Technology, 109, 1–25. https://doi.org/10.6028/jres.109.002

Chen, X., Duan, H., Cao, B., Sun, Q., & Yang, W. (2022). The evolution mechanism of an FeMo alloy catalyst for growth of single-walled carbon nanotubes. Physical Chemistry Chemical Physics, 24, 25480–25486. https://doi.org/10.1039/D2CP03182E

Choi, S., Jeon, J., Seo, N., Moon, Y. H., Shon, I.-J., & Lee, S.-J. (2020). Effect of composition on strain-induced martensite transformation of FeMnNiC alloys fabricated by powder metallurgy. Archives of Metallurgy and Materials, 65(3), 1001–1004. https://doi.org/10.24425/amm.2020.133206

Citrawati, F., Dwiwandono, R., & Firmansyah, L. (2020). The effect of Ni on the formation of bainite in Fe–Ni lateritic steels through semi-continuous cooling method. International Journal of Technology, 11(1), 60–70. https://doi.org/10.14716/ijtech.v11i1.3178

Danninger, H., Gierl-Mayer, C., Prokofyev, M., Huemer, M.-C., De Oro Calderon, R., Hellein, R., Müller, A., & Stetina, G. (2021). Manganese—a promising element also in high alloy sintered steels. Powder Metallurgy, 64(2), 115–125. https://doi.org/10.1080/00325899.2021.1886717

Ding, Z., Ding, C., Yang, Z., Zhang, H., Wang, F., Li, H., Xu, J., Shan, D., & Guo, B. (2024). Ultra-high strength in FCC+BCC high-entropy alloy via different gradual morphology. Materials, 17(18). https://doi.org/10.3390/ma17184535

Ekholm, M., & Abrikosov, I. A. (2011). Structural and magnetic ground-state properties of ?-FeMn alloys from ab initio calculations. Physical Review B, 84, 104423. https://doi.org/10.1103/PhysRevB.84.104423

Farihin, P., Suharno, B., Dani, M., Ngarayana, I. W., Andryansyah, Insani, A., Wardana, R. I., Huang, C. A., Aziz, F., & Adhika, D. R. (2025). High-resolution neutron diffraction analysis of residual stresses in oxide dispersion strengthened FeNiCrY?O? cast alloys for advanced nuclear reactor applications. International Journal of Technology, 16(2), 625–638. https://doi.org/10.14716/ijtech.v16i2.7241

Feng, Y. P., Blanquer, A., Fornell, J., Zhang, H., Solsona, P., Baró, M. D., Suriñach, S., Ibáñez, E., García-Lecina, E., Wei, X., Li, R., Barrios, L., Pellicer, E., Nogués, C., & Sort, J. (2016). Novel Fe–Mn–Si–Pd alloys: Insights into mechanical, magnetic, corrosion resistance and biocompatibility performances. Journal of Materials Chemistry B, 4, 6402–6412. https://doi.org/10.1039/C6TB01951J

Gambaro, S., Paternoster, C., Occhionero, B., Fiocchi, J., Biffi, C., Tuissi, A., & Mantovani, D. (2021). Mechanical and degradation behavior of three Fe–Mn–C alloys for potential biomedical applications. Materials Today Communications, 27, 102250. https://doi.org/10.1016/j.mtcomm.2021.102250

Hasegawa, T., Kanatani, S., Kazaana, M., Takahashi, K., Kumagai, K., Hirao, M., & Ishio, S. (2017). Conversion of FeCo from soft to hard magnetic material by lattice engineering and nanopatterning. Scientific Reports, 7, 13215. https://doi.org/10.1038/s41598-017-13602-x

Idhil, A., Borca, C., Uldry, A.-C., Zema, N., Turchini, S., Catone, D., Foelske, A., Grolimund, D., & Samaras, M. (2012). The influence of Cr composition on the local magnetic structure of FeCr alloys. Nuclear Instruments and Methods in Physics Research Section B, 284, 1–5. https://doi.org/10.1016/j.nimb.2011.08.071

Kang, L., Yuan, H., Li, H., Ji, Y., Liu, H., & Liu, G. (2021). Enhanced mechanical properties of Fe–Mn–Al–C low density steel via aging treatment. Frontiers in Materials, 8. https://doi.org/10.3389/fmats.2021.680776

Kern, A., Coelho, A. A., & Cheary, R. W. (2004). Convolution based profile fitting. In E. J. Mittemeijer & P. Scardi (Eds.), Diffraction analysis of the microstructure of materials (pp. 17–50). Springer. https://doi.org/10.1007/978-3-662-06723-9_2

Khan, F., & Rashed, H. M. M. A. (2020). Phase transformation in micro-alloyed steels. In A. Sharma, Z. Duriagina, & S. Kumar (Eds.), Engineering steels and high entropy alloys. IntechOpen. https://doi.org/10.5772/intechopen.91468

Kim, H., Suh, D.-W., & Kim, N. J. (2013). Fe–Al–Mn–C lightweight structural alloys: A review on the microstructures and mechanical properties. Science and Technology of Advanced Materials, 14, 014205. https://doi.org/10.1088/1468-6996/14/1/014205

Kisku, N. (2024). Development of novel low density ultra-high strength manganese-steel with significant ductility through thermo-mechanical processing route. Materials Science and Engineering: A, 901, 146591. https://doi.org/10.1016/j.msea.2024.146591

Kochma?ski, P., Chyli?ska, R., Figiel, P., Fryska, S., Kochma?ska, A. E., Kwiatkowska, M., Kwiatkowski, K., Niemczyk, A., S?owik, J., Maziarz, W., Rogal, L., Dybowski, K., & Baranowska, J. (2024). Influence of chemical composition on structure and mechanical properties of vacuum-carburized low-alloy steels. Materials, 17(2). https://doi.org/10.3390/ma17020515

Krauss, G. (2015). Steels: Processing, structure, and performance (2nd ed.). ASM International. https://doi.org/10.31399/asm.tb.spsp2.9781627082655

Krüger, J. T., Hoyer, K.-P., Huang, J., Filor, V., Mateus-Vargas, R. H., Oltmanns, H., Meißner, J., Grundmeier, G., & Schaper, M. (2022). FeMn with phases of a degradable Ag alloy for residue-free and adapted bioresorbability. Journal of Functional Biomaterials, 13(4). https://doi.org/10.3390/jfb13040185

Kuhn, H., & Medlin, D. (2000). Mechanical testing and evaluation (Vol. 8). ASM International. https://doi.org/10.31399/asm.hb.v08.9781627081764

Le Godec, Y., & Le Floch, S. (2023). Recent developments of high-pressure spark plasma sintering: An overview of current applications, challenges and future directions. Materials, 16(3). https://www.mdpi.com/1996-1944/16/3/997

Lemke, J. N., Fiocchi, J., Biffi, C. A., Tuissi, A., Copes, F., Paternoster, C., Mantovani, D., & Coda, A. (2025). Design, development and performance of a Fe–Mn–Si–Cu alloy for bioabsorbable medical implants. Journal of Materials Chemistry B, 13, 2737–2752. https://doi.org/10.1039/D4TB01635A

Li, C.-M., Sommer, F., & Mittemeijer, E. J. (2002). Characteristics of the ? ? ? transformation in Fe–Mn alloys. Materials Science and Engineering: A, 325(1), 307–319. https://doi.org/10.1016/S0921-5093(01)01459-9

Liu, T.-W., & Wu, X.-L. (2024). Martensitic transformation pathways and crystallographic orientation relationships in steel. Journal of Materials Science & Technology, 174, 74–84. https://doi.org/10.1016/j.jmst.2023.06.060

Malamud, F., Guerrero, L., La Roca, P., Sade, M., & Baruj, A. (2018). Role of Mn and Cr on structural parameters and strain energy during FCC–HCP martensitic transformation in Fe–Mn–Cr shape memory alloys. Materials & Design, 139, 314–323. https://doi.org/10.1016/j.matdes.2017.11.017

Mani, M. K., Viola, G., Reece, M. J., Hall, J. P., & Evans, S. L. (2012). Structural and magnetic characterization of spark plasma sintered Fe–50Co alloys. MRS Online Proceedings Library, 1516, 201–207. https://doi.org/10.1557/opl.2012.1669

Milititsky, M., Van Caenegem, N., & De Cooman, B. C. (2008). Structural and magnetic transformations in the Fe–Mn binary system. Steel Research International, 79, 156–159. https://doi.org/10.1002/srin.200806331

Mola, J., & Ren, M. (2018). On the hardness of high carbon ferrous martensite. IOP Conference Series: Materials Science and Engineering, 373, 012004. https://doi.org/10.1088/1757-899X/373/1/012004

Mukhopadhyay, N. K., Ali, F., Scudino, S., Samadi Khoshkhoo, M., Stoica, M., Srivastava, V. C., Uhlenwinkel, V., Vaughan, G., Suryanarayana, C., & Eckert, J. (2014). Inverse Hall–Petch-like mechanical behaviour in nanophase Al–Cu–Fe quasicrystals: A new phenomenon. Acta Physica Polonica A, 126, 543–548. https://doi.org/10.12693/APhysPolA.126.543

Naik, S. N., & Walley, S. M. (2020). The Hall–Petch and inverse Hall–Petch relations and the hardness of nanocrystalline metals. Journal of Materials Science, 55, 2661–2681. https://doi.org/10.1007/s10853-019-04160-w

Oh, S.-J., Park, D., Kim, K., Shon, I.-J., & Lee, S.-J. (2018). Austenite stability and mechanical properties of nanocrystalline Fe–Mn alloy fabricated by spark plasma sintering with variable Mn content. Materials Science and Engineering: A, 725, 382–388. https://doi.org/10.1016/j.msea.2018.04.051

Oladijo, O., Popoola, A., Ujah, C., & Namoshe, M. (2019). Dataset of spark plasma sintering of Al–Zn–Sn alloy for soft solder application. Data in Brief, 24, 103948. https://doi.org/10.1016/j.dib.2019.103948

Paul, B., Kiel, A., Otto, M., Gemming, T., Hoffmann, V., Giebeler, L., Kaltschmidt, B., Hüttten, A., Gebert, A., Kaltschmidt, C., & Hufenbach, J. (2024). Inherent antibacterial properties of biodegradable FeMnC(Cu) alloys for implant application. ACS Applied Bio Materials, 7, 839–852. https://doi.org/10.1021/acsabm.3c00835

Qayoom, M., & Dar, G. N. (2020). Crystallite size and compressive lattice strain in NiFe?O? nanoparticles as calculated in terms of various models: Influence of annealing temperature. International Journal of Self-Propagating High-Temperature Synthesis, 29, 213–219. https://doi.org/10.3103/S1061386220040111

Sabzi, M., & Farzam, M. (2019). Hadfield manganese austenitic steel: A review of manufacturing processes and properties. Materials Research Express, 6, 1065c2. https://doi.org/10.1088/2053-1591/ab3ee3

Saliba, L., Sammut, K., Tonna, C., Pavli, F., Valdramidis, V., Gatt, R., Giordmaina, R., Camilleri, L., Atanasio, W., Buhagiar, J., & Schembri Wismayer, P. (2023). FeMn and FeMnAg biodegradable alloys: An in vitro and in vivo investigation. Heliyon, 9(5), e15671. https://doi.org/10.1016/j.heliyon.2023.e15671

Shongwe, M., Ramakokovhu, M., Diouf, S., Durowoju, M., Obadele, B., Sule, R., Lethabane, M., & Olubambi, P. (2016). Effect of starting powder particle size and heating rate on spark plasma sintering of FeNi alloys. Journal of Alloys and Compounds, 678, 241–248. https://doi.org/10.1016/j.jallcom.2016.03.270

Siripath, N., Suranuntchai, S., & Sucharitpwatskul, S. (2024). Modeling dynamic recrystallization kinetics in BS 080M46 medium carbon steel: Experimental verification and finite element simulation. International Journal of Technology, 15(5), 1292–1307. https://doi.org/10.14716/ijtech.v15i5.6770

Sun, L., Cheverikin, V., & Golovin, I. (2019). Mechanical spectroscopy as an in situ tool to study anelasticity of martensitic transition in Fe–16Mn–8Cr–2Co alloy. Materials Letters, 256, 126635. https://doi.org/10.1016/j.matlet.2019.126635

Taryana, Y., Wahyu, Y., Manaf, A., Manawan, M., & Ariadi, W. (2022). Structural and microwave absorption properties of BaFe????xSn?Zn?O?? (x = 0.05–1.0) ceramic magnets. Materialia, 23, 101455. https://doi.org/10.1016/j.mtla.2022.101455

Tokita, M. (2013). Spark plasma sintering (SPS) method, systems, and applications. In Handbook of advanced ceramics (pp. 1149–1177). Elsevier. https://doi.org/10.1016/B978-0-12-385469-8.00060-5

Wang, Y., Wu, C., Liu, Y., Tian, M., Lu, X., & Su, X. (2023). Insight into the FCC?HCP transformation in Co-rich Co–Cr–Fe–Mn–Ni high-entropy alloys. Metals, 13(3). https://doi.org/10.3390/met13030504

Wei, F., Cheng, B., Chew, L. T., Lee, J. J., Cheong, K. H., Wu, J., Zhu, Q., & Tan, C. C. (2022). Grain distribution characteristics and effect of diverse size distribution on the Hall–Petch relationship for additively manufactured metal alloys. Journal of Materials Research and Technology, 20, 4130–4136. https://doi.org/10.1016/j.jmrt.2022.09.006

Xu, Z., Jin, C., Xia, A., Zhang, J., & Zhu, G. (2013). Structural and magnetic properties of nanocrystalline nickel-rich Fe–Ni alloy powders prepared via hydrazine reduction. Journal of Magnetism and Magnetic Materials, 336, 14–19. https://doi.org/10.1016/j.jmmm.2013.02.007

Yan, X., Li, Q., Yin, S., Chen, Z., Jenkins, R., Chen, C., Wang, J., Ma, W., Bolot, R., Lupoi, R., Ren, Z., Liao, H., & Liu, M. (2019). Mechanical and in vitro study of an isotropic Ti6Al4V lattice structure fabricated using selective laser melting. Journal of Alloys and Compounds, 782, 209–223. https://doi.org/10.1016/j.jallcom.2018.12.220

Yin, F., Cheng, G. J., Xu, R., Zhao, K., Li, Q., Jian, J., Hu, S., Sun, S., An, L., & Han, Q. (2018). Ultrastrong nanocrystalline stainless steel and its Hall–Petch relationship in the nanoscale. Scripta Materialia, 155, 26–31. https://doi.org/10.1016/j.scriptamat.2018.06.014

Zhang, X., Zhao, Q., Liu, C., Peng, Y., Huang, Y., Kong, J., & Wang, K. (2024). On the formation of oxide inclusions in the high nitrogen chromium–manganese steel produced by wire and arc additive manufacturing. Journal of Materials Research and Technology, 33, 3852–3863. https://doi.org/10.1016/j.jmrt.2024.10.103

Zhang, X., Wang, Q., Kane, J. J., Rufner, J. F., & Sun, C. (2023). Graded microstructure and mechanical properties of spark plasma sintered Fe–Cr alloys. Journal of Alloys and Compounds, 967, 171448. https://doi.org/10.1016/j.jallcom.2023.171448