• International Journal of Technology (IJTech)
  • Vol 17, No 1 (2026)

Design and Implementation of Operational Mode for Electric Vehicle Charging Stations Integrated with Grid-Connected Photovoltaic Systems

Design and Implementation of Operational Mode for Electric Vehicle Charging Stations Integrated with Grid-Connected Photovoltaic Systems

Title: Design and Implementation of Operational Mode for Electric Vehicle Charging Stations Integrated with Grid-Connected Photovoltaic Systems
Nelly Safitri, Suprihardi Suprihardi, Rudi Syahputra, Dharma Aryani, Ahmad Rizal Sultan, Ajeng Bening Kusumaningtyas, Nuha Nadhiroh, Isra Adelya Izzati

Corresponding email:


Cite this article as:
Safitri, N., Suprihardi, Syahputra, R., Aryani, D., Sultan, A. R., Kusumaningtyas, A. B., Nadhiroh, N., & Izzati, I. A. (2026). Design and implementation of operational mode for electric vehicle charging stations integrated with grid-connected photovoltaic systems. International Journal of Technology, 17 (1), 27–41


14
Downloads
Nelly Safitri Department of Electrical Engineeering, Politeknik Negeri Lhokseumawe, Jl. Banda Aceh-Medan Km. 280.3, Buketrata, Mesjid Punteut, Blang Mangat, Lhokseumawe, Aceh 24301, Indonesia
Suprihardi Suprihardi Department of Electrical Engineeering, Politeknik Negeri Lhokseumawe, Jl. Banda Aceh-Medan Km. 280.3, Buketrata, Mesjid Punteut, Blang Mangat, Lhokseumawe, Aceh 24301, Indonesia
Rudi Syahputra Department of Electrical Engineeering, Politeknik Negeri Lhokseumawe, Jl. Banda Aceh-Medan Km. 280.3, Buketrata, Mesjid Punteut, Blang Mangat, Lhokseumawe, Aceh 24301, Indonesia
Dharma Aryani Department of Electrical Engineeering, Politeknik Negeri Ujung Pandang, Jl. Tamalanrea Indah, Kec. Tamalanrea, Makassar, South Sulawesi, Indonesia
Ahmad Rizal Sultan Department of Electrical Engineeering, Politeknik Negeri Ujung Pandang, Jl. Tamalanrea Indah, Kec. Tamalanrea, Makassar, South Sulawesi, Indonesia
Ajeng Bening Kusumaningtyas Department of Electrical Engineeering, Politeknik Negeri Jakarta, Jl. Prof. DR. G.A. Siwabessy, Kukusan, Kec. Beji, Depok, Jakarta, Indonesia
Nuha Nadhiroh Department of Electrical Engineeering, Politeknik Negeri Jakarta, Jl. Prof. DR. G.A. Siwabessy, Kukusan, Kec. Beji, Depok, Jakarta, Indonesia
Isra Adelya Izzati Department of Chemical Engineeering, Politeknik Negeri Lhokseumawe, Jl. Banda Aceh-Medan Km. 280.3, Buketrata, Mesjid Punteut, Blang Mangat, Lhokseumawe, Aceh 24301, Indonesia
Email to Corresponding Author

Abstract
Design and Implementation of Operational Mode for Electric Vehicle Charging Stations Integrated with Grid-Connected Photovoltaic Systems

This study investigates how electric vehicle (EV) charging can work together with photovoltaic (PV) power generation through smart charging techniques and a voltage-to-grid (V2G) system. A new model for an electric vehicle charging station (EVCS) was created and evaluated to understand how well it works, how it can be improved, and how efficient it is. By combining the EVCS with the PV system, the goal is to decrease power wastage, boost PV self-usage, and decrease customer costs. The charging station model features a centralized charging station offering both slow and fast battery charging options, along with two charging voltage choices (48 and 60 V) within a 2.5 kW-capacity PV system. The model simulation runs on the Simulink MATLAB software. To control the voltage, current, and state of charge (SoC) of EV batteries during charging and discharging, a method called constant current-constant voltage (CC-CV) is used. This method focuses on effectively maximizing charging power and preventing battery overcharging. Fuzzy logic controllers adjust the duty cycle to maintain stable current and voltage. In the V2G system, electric vehicles (EVs) can charge, discharge, and serve as energy storage for the grid. Moreover, smart charging is being implemented to improve coordination among electric vehicles, local electricity production, and other power needs. Through a specific control system, EVs can be charged when there is a surplus of solar power, but they will refrain from charging during peak energy usage times.

CC-CV; Electric vehicle; EVCS; Photovoltaic; State of charge; Voltage-to-grid.

References

Ackermann, T., Andersson, G., & S'oder, L. (2001). Distributed generation: A definition. Electric Power Systems Research, 57 (3), 195–204. https://doi.org/10.1016/S03787796(01)001018

Ajiwiguna, T., & Kirom, M. (2024). Uninterrupted electricity supply using off-grid solar PV systems for remote areas. International Journal of Technology, 15 (5), 1561–1572. https://doi.org/10.14716/ijtech.v15i5.6089

Akinyemi, A., Musasa, K., & Davidson, I. (2022). Analysis of voltage rise phenomena in electrical power network with high concentration of renewable distributed generations. Scientific Reports, 12 (1), 1–15. https://doi.org/10.1038/s41598-022-11765-w

Barr ?e, A., Deguilhem, B., Grolleau, S., G ?erard, M., Suard, F., & Riu, D. (2013). A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. Journal of Power Sources, 241, 680–689. https://doi.org/10.1016/j.jpowsour.2013.05.040

Basso, T. (2014). IEEE 1547 and 2030 standards for distributed energy resources interconnection and interoperability with the electricity grid (tech. rep.). National Renewable Energy Laboratory (NREL). Golden, CO. https://doi.org/10.2172/1166677

Bollen, M., & R ?onnberg, S. (2017). The hosting capacity of the power grid for renewable electricity production and new large consumption equipment. Energies, 10 (9), 1–21. https://doi.org/10.3390/en10091325

Catal, P. (2020). Prosumer flexibility: A comprehensive state-of-the-art review and scientometric analysis. Energies, 13 (11), 2710. https://doi.org/10.3390/en13112710

Das, B., & Hasan, M. (2021). Optimal sizing of a stand-alone hybrid system for electric and thermal loads using excess energy and waste heat. Energy, 214, 119036. https://doi.org/10.1016/j.energy.2020.119036

Dubarry, M., Qin, N., & Brooker, P. (2018). Calendar aging of commercial Li-ion cells of different chemistries – a review. Current Opinion in Electrochemistry, 9, 106–113. https://doi.org/10.1016/j.coelec.2018.05.023

Ertugrul, N. (2016). Battery storage technologies, applications and trends in renewable energy. 2016 IEEE International Conference on Sustainable Energy Technologies (ICSET), 420–425. https://doi.org/10.1109/ICSET.2016.7811821

Guille, C., & Gross, G. (2009). A conceptual framework for the vehicle-to-grid (V2G) implementation. Energy Policy, 37 (11), 4379–4390. https://doi.org/10.1016/j.enpol.2009.05.053

Hasanah, R., Yuniar, F., Setyawati, O., Suyono, H., Sawitri, D., & Taufik, T. (2024). A modified perturb-and-observe control for improved maximum power point tracking performance on grid-connected photovoltaic system. International Journal of Technology, 15 (1), 99–109. https://doi.org/10.14716/ijtech.v15i1.5316

Idris, M., Garniwa, I., Soesilo, T., Utomo, S., & Asyari, M. (2025). Environmental impacts of internal combustion engine vs electric vehicle: Life-cycle assessment review. International Journal of Technology, 16 (3), 882–913. https://doi.org/10.14716/ijtech.v16i3.7347

Kern, T., Dossow, P., & von Roon, S. (2020). Integrating bidirectionally chargeable electric vehicles into the electricity markets. Energies, 13 (21), 5812. https://doi.org/10.3390/en13215812

Krupp, A., Beckmann, R., Diekmann, T., Ferg, E., Schuldt, F., & Agert, C. (2022). Calendar aging model for lithium-ion batteries considering the influence of cell characterization. Journal of Energy Storage, 45, 103506. https://doi.org/10.1016/j.est.2021.103506

Lam, V., Cui, X., Stroebl, F., Uppaluri, M., Onori, S., & Chueh, W. (2025). A decade of insights: Delving into calendar aging trends and implications. Joule, 9 (1), 101796. https://doi.org/10.1016/j.joule.2024.11.013

Luthander, R. (2018). Self-consumption of photovoltaic electricity in residential buildings [Doc-toral dissertation, Uppsala University].

Mahmud, I., Medha, M., & Hasanuzzaman, M. (2023). Global challenges of electric vehicle charging systems and its future prospects: A review. Research in Transportation Business and Management, 49, 101011. https://doi.org/10.1016/j.rtbm.2023.101011

Mastoi, M., Zhuang, S., Munir, H., Haris, M., Hassan, M., Alqarni, M., & Alamri, B. (2023). A study of charging-dispatch strategies and vehicle-to-grid technologies for electric vehicles in distribution networks. Energy Reports, 9, 1777–1806. https://doi.org/10.1016/j.egyr.2022.12.139

Nasir, M., Safitri, N., Rachmawati, Y., & Arhami, M. (2023). A concept of V2G battery charging station as the implementation of IoT and cyber physical network system. International Journal of Electronics and Telecommunications, 69 (2), 269–273. https://doi.org/10.24425/ijet.2023.144360

Nutkani, I., Toole, H., Fernando, N., & Andrew, L. (2024). Impact of EV charging on electrical distribution network and mitigating solutions – a review. IET Smart Grid, 7 (5), 485–502. https://doi.org/10.1049/stg2.12156

Rajalakshmi, M., & Wahab, R. (2025). Artificial intelligence-based optimal design of bidirectional capacitor-inductor-inductor-capacitor converter for electric vehicle applications. International Journal of Technology, 16 (3), 933–948. https://doi.org/10.14716/ijtech.v16i3.7486

Ramadhani, U., Fachrizal, R., Shepero, M., Munkhammar, J., & Wid ?en, J. (2021). Probabilistic load flow analysis of electric vehicle smart charging in unbalanced LV distribution systems with residential photovoltaic generation. Sustainable Cities and Society, 72, 103043. https://doi.org/10.1016/j.scs.2021.103043

Rama-Mohan, P., Neeli-Mallikarjuna, A., & Niteesh-Kumar, K. (2020). A novel over-voltage and under-voltage protecting system for industrial and domestic applications. International Journal of Innovative Science and Research Technology, 5 (10), 885–889. http://www.ijisrt.com

Sandstr ?om, M., Bales, C., & Dotzauer, E. (2022). Hosting capacity of the power grid for electric vehicles – a case study on a Swedish low voltage grid. IOP Conference Series: Earth and Environmental Science, 1050 (1), 012008. https://doi.org/10.1088/1751315/1050/1/012008

Scott, C., & Ahsan, M. (2021). Machine learning based vehicle to grid strategy for improving the energy performance of public buildings. Sustainability, 13 (7), 4003. https://doi.org/10.3390/su13074003

Shahid, M., Zhuang, S., Mudassir, H., & Haris, M. (2023). A study of charging-dispatch strategies and vehicle-to-grid technologies for electric vehicles in distribution networks. Energy Reports, 9, 1777–1806. https://doi.org/10.1016/j.egyr.2022.12.139

Singh, S., & Verma, M. (2023). Smart charging schedule of plug-in electric vehicles for voltage support: A prosumer-centric approach. Sustainable Energy, Grids and Networks, 33, 100972. https://doi.org/10.1016/j.segan.2022.100972

Sovacool, B., & Noel, L. (2019). A state-of-the-art review of electric vehicle to grid (V2G) technology. IOP Conference Series: Materials Science and Engineering, 561, 012103. https://doi.org/10.1088/1757-899X/561/1/012103

Stecca, M., Vermeer, W., Soeiro, T., Ram'irez Elizondo, L., Bauer, P., & Palensky, P. (2022). Battery storage integration in EV fast charging station for increasing its revenues and reducing the grid impact. 2022 IEEE Transportation Electrification Conference and Expo (ITEC), 109–113. https://doi.org/10.1109/ITEC53557.2022.9814040

Steward, D. (2017). Critical elements of vehicle-to-grid (V2G) economics (tech. rep.). National Renewable Energy Laboratory (NREL). Golden, CO. https://doi.org/10.2172/1390043

Un-Noor, F., Padmanaban, S., Mihet-Popa, L., Mollah, M., & Hossain, E. (2017). A comprehensive study of key electric vehicle (EV) components, technologies, challenges, impacts, and future direction of development. Energies, 10 (8), 1217. https://doi.org/10.3390/en10081217

Wang, Z., & Wang, S. (2013). Grid power peak shaving and valley filling using vehicle-to-grid systems. IEEE Transactions on Power Delivery, 28 (3), 1822–1829. https://doi.org/10.1109/TPWRD.2013.2264497

Whulanza, Y. (2023). Progressing the sustainable mobility: View of electric vehicles. International Journal of Technology, 14 (3), 455–459. https://doi.org/10.14716/ijtech.v14i3.6465

Wid'en, J., & Munkhammar, J. (2019). Solar radiation theory. https://doi.org/10.33063/diva381852