Published at : 28 Jan 2026
Volume : IJtech
Vol 17, No 1 (2026)
DOI : https://doi.org/10.14716/ijtech.v17i1.7771
| Nelly Safitri | Department of Electrical Engineeering, Politeknik Negeri Lhokseumawe, Jl. Banda Aceh-Medan Km. 280.3, Buketrata, Mesjid Punteut, Blang Mangat, Lhokseumawe, Aceh 24301, Indonesia |
| Suprihardi Suprihardi | Department of Electrical Engineeering, Politeknik Negeri Lhokseumawe, Jl. Banda Aceh-Medan Km. 280.3, Buketrata, Mesjid Punteut, Blang Mangat, Lhokseumawe, Aceh 24301, Indonesia |
| Rudi Syahputra | Department of Electrical Engineeering, Politeknik Negeri Lhokseumawe, Jl. Banda Aceh-Medan Km. 280.3, Buketrata, Mesjid Punteut, Blang Mangat, Lhokseumawe, Aceh 24301, Indonesia |
| Dharma Aryani | Department of Electrical Engineeering, Politeknik Negeri Ujung Pandang, Jl. Tamalanrea Indah, Kec. Tamalanrea, Makassar, South Sulawesi, Indonesia |
| Ahmad Rizal Sultan | Department of Electrical Engineeering, Politeknik Negeri Ujung Pandang, Jl. Tamalanrea Indah, Kec. Tamalanrea, Makassar, South Sulawesi, Indonesia |
| Ajeng Bening Kusumaningtyas | Department of Electrical Engineeering, Politeknik Negeri Jakarta, Jl. Prof. DR. G.A. Siwabessy, Kukusan, Kec. Beji, Depok, Jakarta, Indonesia |
| Nuha Nadhiroh | Department of Electrical Engineeering, Politeknik Negeri Jakarta, Jl. Prof. DR. G.A. Siwabessy, Kukusan, Kec. Beji, Depok, Jakarta, Indonesia |
| Isra Adelya Izzati | Department of Chemical Engineeering, Politeknik Negeri Lhokseumawe, Jl. Banda Aceh-Medan Km. 280.3, Buketrata, Mesjid Punteut, Blang Mangat, Lhokseumawe, Aceh 24301, Indonesia |
This study investigates how electric vehicle (EV) charging can work together with photovoltaic (PV) power generation through smart charging techniques and a voltage-to-grid (V2G) system. A new model for an electric vehicle charging station (EVCS) was created and evaluated to understand how well it works, how it can be improved, and how efficient it is. By combining the EVCS with the PV system, the goal is to decrease power wastage, boost PV self-usage, and decrease customer costs. The charging station model features a centralized charging station offering both slow and fast battery charging options, along with two charging voltage choices (48 and 60 V) within a 2.5 kW-capacity PV system. The model simulation runs on the Simulink MATLAB software. To control the voltage, current, and state of charge (SoC) of EV batteries during charging and discharging, a method called constant current-constant voltage (CC-CV) is used. This method focuses on effectively maximizing charging power and preventing battery overcharging. Fuzzy logic controllers adjust the duty cycle to maintain stable current and voltage. In the V2G system, electric vehicles (EVs) can charge, discharge, and serve as energy storage for the grid. Moreover, smart charging is being implemented to improve coordination among electric vehicles, local electricity production, and other power needs. Through a specific control system, EVs can be charged when there is a surplus of solar power, but they will refrain from charging during peak energy usage times.
CC-CV; Electric vehicle; EVCS; Photovoltaic; State of charge; Voltage-to-grid.
Ackermann,
T., Andersson, G., & S'oder, L. (2001). Distributed generation: A
definition. Electric Power Systems Research, 57 (3), 195–204. https://doi.org/10.1016/S03787796(01)001018
Ajiwiguna,
T., & Kirom, M. (2024). Uninterrupted electricity supply using off-grid
solar PV systems for remote areas. International Journal of Technology, 15 (5),
1561–1572. https://doi.org/10.14716/ijtech.v15i5.6089
Akinyemi,
A., Musasa, K., & Davidson, I. (2022). Analysis of voltage rise phenomena
in electrical power network with high concentration of renewable distributed
generations. Scientific Reports, 12 (1), 1–15. https://doi.org/10.1038/s41598-022-11765-w
Barr
?e, A., Deguilhem, B., Grolleau, S., G ?erard, M., Suard, F., & Riu, D.
(2013). A review on lithium-ion battery ageing mechanisms and estimations for
automotive applications. Journal of Power Sources, 241, 680–689. https://doi.org/10.1016/j.jpowsour.2013.05.040
Basso,
T. (2014). IEEE 1547 and 2030 standards for distributed energy resources
interconnection and interoperability with the electricity grid (tech. rep.).
National Renewable Energy Laboratory (NREL). Golden, CO. https://doi.org/10.2172/1166677
Bollen,
M., & R ?onnberg, S. (2017). The hosting capacity of the power grid for
renewable electricity production and new large consumption equipment. Energies, 10 (9), 1–21. https://doi.org/10.3390/en10091325
Catal,
P. (2020). Prosumer flexibility: A comprehensive state-of-the-art review and
scientometric analysis. Energies, 13 (11), 2710. https://doi.org/10.3390/en13112710
Das,
B., & Hasan, M. (2021). Optimal sizing of a stand-alone hybrid system for
electric and thermal loads using excess energy and waste heat. Energy, 214,
119036. https://doi.org/10.1016/j.energy.2020.119036
Dubarry,
M., Qin, N., & Brooker, P. (2018). Calendar aging of commercial Li-ion
cells of different chemistries – a review. Current Opinion in Electrochemistry,
9, 106–113. https://doi.org/10.1016/j.coelec.2018.05.023
Ertugrul,
N. (2016). Battery storage technologies, applications and trends in renewable
energy. 2016 IEEE International Conference on Sustainable Energy Technologies
(ICSET), 420–425. https://doi.org/10.1109/ICSET.2016.7811821
Guille,
C., & Gross, G. (2009). A conceptual framework for the vehicle-to-grid
(V2G) implementation. Energy Policy, 37 (11), 4379–4390. https://doi.org/10.1016/j.enpol.2009.05.053
Hasanah,
R., Yuniar, F., Setyawati, O., Suyono, H., Sawitri, D., & Taufik, T.
(2024). A modified perturb-and-observe control for improved maximum power point
tracking performance on grid-connected photovoltaic system. International
Journal of Technology, 15 (1), 99–109. https://doi.org/10.14716/ijtech.v15i1.5316
Idris,
M., Garniwa, I., Soesilo, T., Utomo, S., & Asyari, M. (2025). Environmental
impacts of internal combustion engine vs electric vehicle: Life-cycle
assessment review. International Journal of Technology, 16 (3), 882–913. https://doi.org/10.14716/ijtech.v16i3.7347
Kern, T., Dossow, P., & von Roon, S. (2020). Integrating bidirectionally chargeable electric vehicles into the
electricity markets. Energies, 13 (21), 5812. https://doi.org/10.3390/en13215812
Krupp, A., Beckmann, R., Diekmann, T., Ferg, E., Schuldt,
F., & Agert, C. (2022). Calendar
aging model for lithium-ion batteries considering the influence of cell
characterization. Journal of Energy Storage, 45, 103506. https://doi.org/10.1016/j.est.2021.103506
Lam,
V., Cui, X., Stroebl, F., Uppaluri, M., Onori, S., & Chueh, W. (2025). A
decade of insights: Delving into calendar aging trends and implications. Joule, 9 (1), 101796. https://doi.org/10.1016/j.joule.2024.11.013
Luthander,
R. (2018). Self-consumption of photovoltaic electricity in residential
buildings [Doc-toral dissertation, Uppsala University].
Mahmud,
I., Medha, M., & Hasanuzzaman, M. (2023). Global challenges of electric
vehicle charging systems and its future prospects: A review. Research in
Transportation Business and Management, 49, 101011. https://doi.org/10.1016/j.rtbm.2023.101011
Mastoi, M., Zhuang, S., Munir, H., Haris, M., Hassan, M.,
Alqarni, M., & Alamri, B. (2023). A
study of charging-dispatch strategies and vehicle-to-grid technologies for
electric vehicles in distribution networks. Energy Reports, 9, 1777–1806. https://doi.org/10.1016/j.egyr.2022.12.139
Nasir,
M., Safitri, N., Rachmawati, Y., & Arhami, M. (2023). A concept of V2G
battery charging station as the implementation of IoT and cyber physical
network system. International Journal of Electronics and Telecommunications, 69
(2), 269–273. https://doi.org/10.24425/ijet.2023.144360
Nutkani,
I., Toole, H., Fernando, N., & Andrew, L. (2024). Impact of EV charging on
electrical distribution network and mitigating solutions – a review. IET Smart Grid, 7 (5), 485–502. https://doi.org/10.1049/stg2.12156
Rajalakshmi,
M., & Wahab, R. (2025). Artificial intelligence-based optimal design of bidirectional
capacitor-inductor-inductor-capacitor converter for electric vehicle applications.
International Journal of Technology, 16 (3), 933–948. https://doi.org/10.14716/ijtech.v16i3.7486
Ramadhani,
U., Fachrizal, R., Shepero, M., Munkhammar, J., & Wid ?en, J. (2021).
Probabilistic load flow analysis of electric vehicle smart charging in
unbalanced LV distribution systems with residential photovoltaic generation.
Sustainable Cities and Society, 72, 103043. https://doi.org/10.1016/j.scs.2021.103043
Rama-Mohan, P., Neeli-Mallikarjuna, A., &
Niteesh-Kumar, K. (2020). A
novel over-voltage and under-voltage protecting system for industrial and
domestic applications. International Journal of Innovative Science and Research
Technology, 5 (10), 885–889. http://www.ijisrt.com
Sandstr ?om, M., Bales, C., & Dotzauer, E. (2022). Hosting capacity of the power grid for electric vehicles – a case
study on a Swedish low voltage grid. IOP Conference Series: Earth and Environmental
Science, 1050 (1), 012008. https://doi.org/10.1088/1751315/1050/1/012008
Scott,
C., & Ahsan, M. (2021). Machine learning based vehicle to grid strategy for
improving the energy performance of public buildings. Sustainability, 13 (7),
4003. https://doi.org/10.3390/su13074003
Shahid,
M., Zhuang, S., Mudassir, H., & Haris, M. (2023). A study of
charging-dispatch strategies and vehicle-to-grid technologies for electric
vehicles in distribution networks. Energy Reports, 9, 1777–1806. https://doi.org/10.1016/j.egyr.2022.12.139
Singh,
S., & Verma, M. (2023). Smart charging schedule of plug-in electric
vehicles for voltage support: A prosumer-centric approach. Sustainable Energy,
Grids and Networks, 33, 100972. https://doi.org/10.1016/j.segan.2022.100972
Sovacool,
B., & Noel, L. (2019). A state-of-the-art review of electric vehicle to
grid (V2G) technology. IOP Conference Series: Materials Science and
Engineering, 561, 012103. https://doi.org/10.1088/1757-899X/561/1/012103
Stecca, M., Vermeer, W., Soeiro, T., Ram'irez Elizondo,
L., Bauer, P., & Palensky, P. (2022). Battery
storage integration in EV fast charging station for increasing its revenues and
reducing the grid impact. 2022 IEEE Transportation Electrification Conference
and Expo (ITEC), 109–113. https://doi.org/10.1109/ITEC53557.2022.9814040
Steward,
D. (2017). Critical elements of vehicle-to-grid (V2G) economics (tech. rep.).
National Renewable Energy Laboratory (NREL). Golden, CO. https://doi.org/10.2172/1390043
Un-Noor, F., Padmanaban, S., Mihet-Popa, L., Mollah, M.,
& Hossain, E. (2017). A
comprehensive study of key electric vehicle (EV) components, technologies,
challenges, impacts, and future direction of development. Energies, 10 (8), 1217. https://doi.org/10.3390/en10081217
Wang,
Z., & Wang, S. (2013). Grid power peak shaving and valley filling using
vehicle-to-grid systems. IEEE Transactions on Power Delivery, 28 (3),
1822–1829. https://doi.org/10.1109/TPWRD.2013.2264497
Whulanza, Y. (2023). Progressing the sustainable mobility: View of electric vehicles. International Journal of Technology, 14 (3), 455–459. https://doi.org/10.14716/ijtech.v14i3.6465
Wid'en, J., & Munkhammar, J. (2019). Solar radiation theory. https://doi.org/10.33063/diva381852