• International Journal of Technology (IJTech)
  • Vol 16, No 6 (2025)

Photocatalytic NOx Reduction to Ammonia Using Zirconium Incorporated g-C3N4 Catalyst

Photocatalytic NOx Reduction to Ammonia Using Zirconium Incorporated g-C3N4 Catalyst

Title: Photocatalytic NOx Reduction to Ammonia Using Zirconium Incorporated g-C3N4 Catalyst
Desi Kurniawan, Wibawa Hendra Saputera, Dwiwahju Sasongko

Corresponding email:


Cite this article as:
Kurniawan, D., Saputera, W., & Sasongko, D. (2025). Photocatalytic nox reduction to ammonia using zirconium incorporated g-c3n4 catalyst. International Journal of Technology, 16 (6), 2043–2061.

13
Downloads
Desi Kurniawan Research Group on Sustainable Energy and Technology, Department of Chemical Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia
Wibawa Hendra Saputera 1. Research Group on Sustainable Energy and Technology, Department of Chemical Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia 2. Center for Catalysis and Reaction Engineering, I
Dwiwahju Sasongko 1. Research Group on Sustainable Energy and Technology, Department of Chemical Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia. 2. Research Center for New and Renewable Energy, I
Email to Corresponding Author

Abstract
Photocatalytic NOx Reduction to Ammonia Using Zirconium Incorporated g-C3N4 Catalyst

Nitrogen oxides (NOx) are major air pollutants that contribute to environ mental and health issues. 
The photocatalytic issues. The photocatalytic reduction of NOx into ammonia (NH3) offers a sustainable approach to mitigating emissions while producing valuable chemi cal feedstocks. In this study, a zirconium-doped graphitic carbon nitride (Zr/g-C3N4) photocatalyst was synthesized via pyrolysis and its efficiency in NOx reduction under visible light irradiation was evaluated. The structural, optical, and morphological prop erties of the photocatalyst were analyzed using X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), scanning electron microscopy-energy dispersive X-ray (SEM-EDX), and Brunauer–Emmett–Teller (BET) surface area analysis. Zr in corporation enhanced charge separation, improved surface properties, and increased light absorption, leading to superior photocatalytic activity. Photocatalytic performance tests demonstrated that 1%Zr/g-C3N4 calcined at 400°C exhibited the highest ammonia yield of 119.1 µg/L·h·gcatalyst, significantly outperforming undoped g-C3N4. The enhanced ac tivity was attributed to the introduction of Zr, which facilitated better electron transport and reduced photogenerated charge carrier recombination. However, excessive calcination temperatures resulted in structural degradation and photocatalytic efficiency decline. The reaction mechanism analysis confirmed that NOx was effectively reduced to NH3 through multi-electron transfer processes, with water oxidation occurring simultaneously to main tain charge balance. This study highlights the importance of dopant concentration and calcination conditions in optimizing photocatalytic NOx reduction. Zr/g-C3N4 is a promis ing photocatalyst for environmental remediation and sustainable ammonia production, providing an innovative approach for pollution control and nitrogen cycle use.

Ammonnia; g-C3N4; NOx; Photocatalytic; Zirconium

Supplementary Material
FilenameDescription
R2-CE-7654-20251028093303.pdf ---
References

Astuti, Y., Amri, D., Widodo, D. S., Widiyandari, H., Balgis, R., & Ogi, T. (2020). Effect of fuels on the physicochemical properties and photocatalytic activity of bismuth oxide, synthesized using solution combustion method. International Journal of Technology, 11(1), 26–36. https://doi.org/10.14716/ijtech.v11i1.3342

Cheng, L., Zhang, H., Li, X., Fan, J., & Xiang, Q. (2021). Carbon–graphitic carbon nitride hybrids for heterogeneous photocatalysis. Small, 17, 2005231. https://doi.org/10.1002/smll.202005231

Cui, X., Tang, C., & Zhang, Q. (2018). A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Advanced Energy Materials, 8, 1800369. https://doi.org/10.1002/aenm.201800369

Fidan, T., Torabfam, M., Saleem, Q., Wang, C., Kurt, H., Yüce, M., Tang, J., & Bayazit, M. K. (2021). Functionalized graphitic carbon nitrides for environmental and sensing applications. Advanced Energy and Sustainability Research, 2(1), 2000273. https://doi.org/10.1002/aesr.202000073

Fu, J., Xu, Q., Low, J., Jiang, C., & Yu, J. (2019). Ultrathin 2D/2D WO?/g-C?N? step-scheme H?-production photocatalyst. Applied Catalysis B: Environmental, 243, 556–565. https://doi.org/10.1016/j.apcatb.2018.11.011

Gu, Z., Zhang, B., Asakura, Y., Tsukuda, S., Kato, H., Kakihana, M., & Yin, S. (2020). Alkali-assisted hydrothermal preparation of g-C?N?/rGO nanocomposites with highly enhanced photocatalytic NOx removal activity. Applied Surface Science, 521, 146213. https://doi.org/10.1016/j.apsusc.2020.146213

Henderson-Sellers, A. (2013). The climate modelling primer (4th ed.). Wiley Blackwell.

Intergovernmental Panel on Climate Change. (2007). Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (S. Solomon et al., Eds.). Cambridge University Press.

Khan, M. M., Ansari, S. A., Pradhan, D., & Ansari, M. O. (2015). Photocatalytic application of TiO? for the removal of pollutants from water. Arabian Journal of Chemistry, 8(5), 749–765. https://doi.org/10.1016/j.arabjc.2014.02.003

Khanal, V., Balayeva, N., Günnemann, C., Mamiyev, Z., Dillert, R., Bahnemann, D. W., & Subramanian, V. R. (2021). Photocatalytic NOx removal using tantalum oxide nanoparticles: A benign pathway. Applied Catalysis B: Environmental, 291, 119974. https://doi.org/10.1016/j.apcatb.2021.119974

Kusdianto, K., Widiyastuti, W., Shimada, M., Nurtono, T., Machmudah, S., & Winardi, S. (2019). Photocatalytic activity of ZnO–Ag nanocomposites prepared by a one-step process using flame pyrolysis. International Journal of Technology, 10(3), 571–581. https://doi.org/10.14716/ijtech.v10i3.2902

Li, G., Guo, J., Hu, Y., Wang, Y., Wang, J., Zhang, S., & Zhong, Q. (2021). Facile synthesis of the Z-scheme graphite-like carbon nitride/silver/silver phosphate nanocomposite for photocatalytic oxidative removal of nitric oxides under visible light. Journal of Colloid and Interface Science, 588, 110–121. https://doi.org/10.1016/j.jcis.2020.12.063

Li, H., Zhao, Y., Tang, Q., & Wu, X. (2023). Thermal stability and photocatalytic degradation activity of g-C?N? under various calcination temperatures. Applied Catalysis B: Environmental, 326, 122385. https://doi.org/10.1016/j.apcatb.2023.122385

Li, X., Chen, G., Yang, L., Jin, Z., & Wang, X. (2020). Photocatalytic NO removal over g-C?N?-based materials: Recent advances and future perspective. Chemical Engineering Journal, 382, 122842. https://doi.org/10.1016/j.cej.2019.122842

Liu, E., Qi, L., Bian, J., Chen, Y., Hu, X., Fan, J., Liu, H., Zhu, C., & Wang, Q. (2015). A facile strategy to fabricate plasmonic Cu-modified TiO? nanoflower films for photocatalytic reduction of CO? to methanol. Materials Research Bulletin, 68, 203–209. https://doi.org/10.1016/j.materresbull.2015.03.064

Liu, Z., Wang, C., Zhu, Z., Lou, Q., Shen, C.-L., Chen, Y., Sun, J., Ye, Y., Zhang, J., Dong, L., & Shan, C.-X. (2021). Wafer-scale growth of two-dimensional graphitic carbon nitride films. Matter, 4, 162–168. https://doi.org/10.1016/j.matt.2021.02.014

Mariyappillai, V., Shiyamala, C., Abisheik, T., Tiffany, M., Pandiyan, V., Senthilraja, A., Afzal, M., Barmavatu, P., Shanmugaraj, K., & Balu, K. (2025). Zr-modified ZnO nanoparticles: Optimized photocatalytic degradation and antibacterial efficiency for pollution control. Ceramics International, 51(17), 23003–23020. https://doi.org/10.1016/j.ceramint.2025.02.402

Mou, H., Yu, L., Zhang, H., Wu, Y., Wang, J., Yang, Y., Liu, X., & Wu, Z. (2019). Fabricating amorphous g-C3N4/ZrO2 photocatalysts by one-step pyrolysis for solar-driven ambient ammonia synthesis. ACS Applied Materials & Interfaces, 11(47), 44360–44365. https://doi.org/10.1021/acsami.9b16786

Muktaridha, O., Adlim, M., Suhendrayatna, S., Ismail, I., & Abu Bakar, N. H. H. (2021). Photocatalytic degradation of skim-latex-vapor odor using iron-doped zinc oxide. International Journal of Technology, 12(4), 739–748. https://doi.org/10.14716/ijtech.v12i4.4227

Mutiara, S., Saputera, W. H., Devianto, H., & Sasongko, D. (2023). Recent advances on the utilization of TiO2-based catalysts in the photocatalytic reduction of CO to methane. ChemistrySelect, 10(20), e202302536. https://doi.org/10.1002/slct.202302536

Mutiara, S., Saputera, W. H., Utomo, W. P., Chung, H. Y., Abdi, F. F., Devianto, H., & Sasongko, D. (2024). Harnessing light and CO with copper–nickel on TiO? photocatalysts for methanol production. ChemCatChem, 16(19), e202400583. https://doi.org/10.1002/cctc.202400583

Nikokavoura, A., & Trapalis, C. (2018). Graphene and g-C?N?-based photocatalysts for NOx removal: A review. Applied Surface Science, 430, 18–52. https://doi.org/10.1016/j.apsusc.2017.08.192

Nosaka, Y., & Nosaka, A. Y. (2017). Generation and detection of reactive oxygen species in photocatalysis. Chemical Reviews, 117(17), 11302–11336. https://doi.org/10.1021/acs.chemrev.7b00161

Pahi, S., Barik, A., Sahoo, C., Rout, K., & Parida, K. (2021). Visible-light-active Zr- and N-doped TiO? coupled g-C?N? heterojunction nanosheets as a photocatalyst for degradation. Nanoscale Advances, 3(22), 6468–6481. https://doi.org/10.1039/D1NA00517E

Paul, D. R., Sharma, R., Nehra, S. P., & Sharma, A. (2019). Effect of calcination temperature, pH, and catalyst loading on photodegradation efficiency of urea-derived graphitic carbon nitride towards methylene blue dye solution. RSC Advances, 9(26), 15381–15389. https://doi.org/10.1039/C9RA02201E

Qu, A., Xu, X., Xie, H., Zhang, Y., Li, Y., & Wang, J. (2016). Effects of calcining temperature on photocatalysis of g-C3N4/TiO2 composites for hydrogen evolution from water. Materials Research Bulletin, 80, 167–176. https://doi.org/10.1016/j.materresbull.2016.03.043

Rahma, F. N., & Hidayat, A. (2023). Biodiesel production from free fatty acid using ZrO?/bagasse fly ash catalyst. International Journal of Technology, 14(1), 206–218. https://doi.org/10.14716/ijtech.v14i1.4873

Saputera, W. H., Yuniar, G., & Sasongko, D. (2024). Light-driven methane conversion: Unveiling methanol using a TiO2/TiOF2 photocatalyst. RSC Advances, 14, 8740–8751. https://doi.org/10.1039/d4ra00353e

Sun, R., Peng, X., Yu, D., & Chen, Y. (2023). Band structure tuning of Zr/C3N4 photocatalysts via thermal processing for enhanced visible-light activity. Journal of Materials Chemistry A, 11(12), 5802–5811. https://doi.org/10.1039/D3TA00652K

Wahyudi, F., Saputera, W. H., Sasongko, D., & Devianto, H. (2023). Recent advances in the development of photocatalytic technology for nitrate reduction to ammonia. Case Studies in Chemical and Environmental Engineering, 8, 100478. https://doi.org/10.1016/j.cscee.2023.100478

Wang, C. W. (2017). Recent advances of graphitic carbon nitride-based structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro Letters, 8, 21–22. https://doi.org/10.1007/s40820-017-0148-2

Wang, Y., Liu, Z., Chen, W., & Feng, H. (2023). Effect of zro particle sintering on the photocatalytic no reduction efficiency of Zr/g-C3N4 composites. Journal of Environmental Chemical Engineering, 11(2), 109833. https://doi.org/10.1016/j.jece.2023.109833

Whulanza, Y., Kusrini, E., Hermansyah, H., Sudibandriyo, M., Sahlan, M., & Kartohardjono, S. (2024). Catalyzing clean energy: The role of hydrogen and ammonia technology processes. International Journal of Technology, 15(4), 803–811. https://doi.org/10.14716/ijtech.v15i4.7171

Yang, H., Zhang, W., Chen, Y., & Sun, C. (2019). Modified Langmuir–Hinshelwood model for NO photocatalytic degradation on semiconductors: A review. Environmental Science: Nano, 6(7), 2021–2035. https://doi.org/10.1039/C9EN00330J

Yang, M., & Xu, Y.-J. (2014). Visible-light-driven photocatalysis on graphene-based materials. Journal of Materials Chemistry A, 2(29), 10733–10753. https://doi.org/10.1039/C4TA00957A

Yi, J., El-Alami, W., Song, Y., Li, H., Ajayan, P. M., & Xu, H. (2019). Emerging surface strategies on graphitic carbon nitride for solar-driven water splitting. Chemical Engineering Journal, 382, 122812. https://doi.org/10.1016/j.cej.2019.122812

Yu, M., Chang, S., Ma, L., Wu, X., Yan, J., Ding, Y., Zhang, X., Carabineiro, S., & Lv, K. (2025). Remarkable improvement in photocatalytic activity of g-C3N4 for NO oxidation through surface hydroxylation. Separation and Purification Technology, 354, 128695. https://doi.org/10.1016/j.seppur.2024.128695

Yu, Q., & Brouwers, H. J. H. (2009). Indoor air purification using heterogeneous photocatalytic oxidation. Part I: Experimental study. Applied Catalysis B: Environmental, 92, 454–461. https://doi.org/10.1016/j.apcatb.2009.09.004

Zhang, J., Zhu, Z., Tang, Y., & Leung, D. Y. C. (2014). Photocatalytic degradation of NOxusingg ? C3N4: Effects of morphology and reaction mechanism. Applied Catalysis B: Environmental, 160–161, 408–415. https://doi.org/10.1016/j.apcatb.2014.05.010

Zhang, L., Jin, Z., Huang, S., Zhang, Y., Zhang, M., Zeng, Y.-J., & Ruan, S. (2019). Ce-doped graphitic carbon nitride derived from metal-organic frameworks as a visible light-responsive photocatalyst for H2 production. Nanomaterials, 9 (11), 1539. https://doi.org/10.3390/nano9111539

Zhang, X., Kong, R. M., Du, H., Xia, L., & Qu, F. (2018). Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a vn nanowire array under ambient conditions. Journal of Chemical, 54, 5323–5325. https://doi.org/10.1039/C8CC00459E

Zhanyong, Y., Jin, M., Wang, X., Zhi, R., Yang, J., Hao, H., Zhang, S., Zhou, E., & Yin, S. (2023). Recent advances in g-C3N4-based photocatalysts for NOx removal. Catalysts, 13 (1), 132–192. https://doi.org/10.3390/catal13010192

Zhao, Y., Wang, Y., & Chen, F. (2021). Toward sustainable nitrogen cycle: Recovery of ammonia from NOx via photocatalysis. Chemical Engineering Journal, 420, 127655. https://doi.org/10.1016/j.cej.2020.127655

Zhou, M., Ou, H., Li, S., Qin, X., Fang, Y., Lee, S., Wang, X., & Ho, W. (2021). Photocatalytic air purification using functional polymeric carbon nitrides. Journal of Science, 8, 210–237. https://doi.org/10.1002/advs.202102376