Published at : 01 Dec 2025
Volume : IJtech
Vol 16, No 6 (2025)
DOI : https://doi.org/10.14716/ijtech.v16i6.7654
| Desi Kurniawan | Research Group on Sustainable Energy and Technology, Department of Chemical Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia |
| Wibawa Hendra Saputera | 1. Research Group on Sustainable Energy and Technology, Department of Chemical Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia 2. Center for Catalysis and Reaction Engineering, I |
| Dwiwahju Sasongko | 1. Research Group on Sustainable Energy and Technology, Department of Chemical Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia. 2. Research Center for New and Renewable Energy, I |
Ammonnia; g-C3N4; NOx; Photocatalytic; Zirconium
| Filename | Description |
|---|---|
| R2-CE-7654-20251028093303.pdf | --- |
Astuti, Y., Amri, D., Widodo, D. S., Widiyandari, H., Balgis, R., &
Ogi, T. (2020). Effect of fuels on the physicochemical properties and
photocatalytic activity of bismuth oxide, synthesized using solution combustion
method. International Journal of Technology, 11(1), 26–36. https://doi.org/10.14716/ijtech.v11i1.3342
Cheng, L., Zhang, H., Li, X., Fan, J., & Xiang, Q. (2021).
Carbon–graphitic carbon nitride hybrids for heterogeneous photocatalysis. Small,
17, 2005231. https://doi.org/10.1002/smll.202005231
Cui, X., Tang, C., & Zhang, Q. (2018). A review of electrocatalytic
reduction of dinitrogen to ammonia under ambient conditions. Advanced Energy
Materials, 8, 1800369. https://doi.org/10.1002/aenm.201800369
Fidan, T., Torabfam, M., Saleem, Q., Wang, C., Kurt, H., Yüce, M.,
Tang, J., & Bayazit, M. K. (2021). Functionalized graphitic carbon nitrides
for environmental and sensing applications. Advanced Energy and
Sustainability Research, 2(1), 2000273. https://doi.org/10.1002/aesr.202000073
Fu, J., Xu, Q., Low, J., Jiang, C., & Yu, J. (2019). Ultrathin
2D/2D WO?/g-C?N? step-scheme H?-production photocatalyst. Applied Catalysis
B: Environmental, 243, 556–565. https://doi.org/10.1016/j.apcatb.2018.11.011
Gu, Z., Zhang, B., Asakura, Y., Tsukuda, S., Kato, H., Kakihana, M.,
& Yin, S. (2020). Alkali-assisted hydrothermal preparation of g-C?N?/rGO
nanocomposites with highly enhanced photocatalytic NOx removal activity. Applied
Surface Science, 521, 146213. https://doi.org/10.1016/j.apsusc.2020.146213
Henderson-Sellers, A. (2013). The climate modelling primer (4th
ed.). Wiley Blackwell.
Intergovernmental Panel on Climate Change. (2007). Climate change
2007: The physical science basis. Contribution of Working Group I to the Fourth
Assessment Report of the Intergovernmental Panel on Climate Change (S.
Solomon et al., Eds.). Cambridge University Press.
Khan, M. M., Ansari, S. A., Pradhan, D., & Ansari, M. O. (2015).
Photocatalytic application of TiO? for the removal of pollutants from water. Arabian
Journal of Chemistry, 8(5), 749–765. https://doi.org/10.1016/j.arabjc.2014.02.003
Khanal, V., Balayeva, N., Günnemann, C., Mamiyev, Z., Dillert, R.,
Bahnemann, D. W., & Subramanian, V. R. (2021). Photocatalytic NOx removal
using tantalum oxide nanoparticles: A benign pathway. Applied Catalysis B:
Environmental, 291, 119974. https://doi.org/10.1016/j.apcatb.2021.119974
Kusdianto, K., Widiyastuti, W., Shimada, M., Nurtono, T., Machmudah,
S., & Winardi, S. (2019). Photocatalytic activity of ZnO–Ag nanocomposites
prepared by a one-step process using flame pyrolysis. International Journal
of Technology, 10(3), 571–581. https://doi.org/10.14716/ijtech.v10i3.2902
Li, G., Guo, J., Hu, Y., Wang, Y., Wang, J., Zhang, S., & Zhong, Q.
(2021). Facile synthesis of the Z-scheme graphite-like carbon
nitride/silver/silver phosphate nanocomposite for photocatalytic oxidative
removal of nitric oxides under visible light. Journal of Colloid and
Interface Science, 588, 110–121. https://doi.org/10.1016/j.jcis.2020.12.063
Li, H., Zhao, Y., Tang, Q., & Wu, X. (2023). Thermal stability and
photocatalytic degradation activity of g-C?N? under various calcination
temperatures. Applied Catalysis B: Environmental, 326, 122385. https://doi.org/10.1016/j.apcatb.2023.122385
Li, X., Chen, G., Yang, L., Jin, Z., & Wang, X. (2020).
Photocatalytic NO removal over g-C?N?-based materials: Recent advances and
future perspective. Chemical Engineering Journal, 382, 122842. https://doi.org/10.1016/j.cej.2019.122842
Liu, E., Qi, L., Bian, J., Chen, Y., Hu, X., Fan, J., Liu, H., Zhu, C.,
& Wang, Q. (2015). A facile strategy to fabricate plasmonic Cu-modified
TiO? nanoflower films for photocatalytic reduction of CO? to methanol. Materials
Research Bulletin, 68, 203–209. https://doi.org/10.1016/j.materresbull.2015.03.064
Liu, Z., Wang, C., Zhu, Z., Lou, Q., Shen, C.-L., Chen, Y., Sun, J.,
Ye, Y., Zhang, J., Dong, L., & Shan, C.-X. (2021). Wafer-scale growth of
two-dimensional graphitic carbon nitride films. Matter, 4, 162–168. https://doi.org/10.1016/j.matt.2021.02.014
Mariyappillai, V., Shiyamala, C., Abisheik, T., Tiffany, M., Pandiyan,
V., Senthilraja, A., Afzal, M., Barmavatu, P., Shanmugaraj, K., & Balu, K.
(2025). Zr-modified ZnO nanoparticles: Optimized photocatalytic degradation and
antibacterial efficiency for pollution control. Ceramics International, 51(17),
23003–23020. https://doi.org/10.1016/j.ceramint.2025.02.402
Mou, H., Yu, L., Zhang, H., Wu, Y., Wang, J., Yang, Y., Liu, X., &
Wu, Z. (2019). Fabricating amorphous g-C3N4/ZrO2 photocatalysts by one-step
pyrolysis for solar-driven ambient ammonia synthesis. ACS Applied Materials
& Interfaces, 11(47), 44360–44365. https://doi.org/10.1021/acsami.9b16786
Muktaridha, O., Adlim, M., Suhendrayatna, S., Ismail, I., & Abu
Bakar, N. H. H. (2021). Photocatalytic degradation of skim-latex-vapor odor
using iron-doped zinc oxide. International Journal of Technology, 12(4),
739–748. https://doi.org/10.14716/ijtech.v12i4.4227
Mutiara, S., Saputera, W. H., Devianto, H., & Sasongko, D. (2023).
Recent advances on the utilization of TiO2-based catalysts in the
photocatalytic reduction of CO to methane. ChemistrySelect, 10(20),
e202302536. https://doi.org/10.1002/slct.202302536
Mutiara, S., Saputera, W. H., Utomo, W. P., Chung, H. Y., Abdi, F. F.,
Devianto, H., & Sasongko, D. (2024). Harnessing light and CO with
copper–nickel on TiO? photocatalysts for methanol production. ChemCatChem,
16(19), e202400583. https://doi.org/10.1002/cctc.202400583
Nikokavoura, A., & Trapalis, C. (2018). Graphene and g-C?N?-based
photocatalysts for NOx removal: A review. Applied Surface Science, 430,
18–52. https://doi.org/10.1016/j.apsusc.2017.08.192
Nosaka, Y., & Nosaka, A. Y. (2017). Generation and detection of
reactive oxygen species in photocatalysis. Chemical Reviews, 117(17),
11302–11336. https://doi.org/10.1021/acs.chemrev.7b00161
Pahi, S., Barik, A., Sahoo, C., Rout, K., & Parida, K. (2021).
Visible-light-active Zr- and N-doped TiO? coupled g-C?N? heterojunction
nanosheets as a photocatalyst for degradation. Nanoscale Advances, 3(22),
6468–6481. https://doi.org/10.1039/D1NA00517E
Paul, D. R., Sharma, R., Nehra, S. P., & Sharma, A. (2019). Effect
of calcination temperature, pH, and catalyst loading on photodegradation
efficiency of urea-derived graphitic carbon nitride towards methylene blue dye
solution. RSC Advances, 9(26), 15381–15389. https://doi.org/10.1039/C9RA02201E
Qu, A., Xu, X., Xie, H., Zhang, Y., Li, Y., & Wang, J. (2016).
Effects of calcining temperature on photocatalysis of g-C3N4/TiO2 composites
for hydrogen evolution from water. Materials Research Bulletin, 80,
167–176. https://doi.org/10.1016/j.materresbull.2016.03.043
Rahma, F. N., & Hidayat, A. (2023). Biodiesel production from free
fatty acid using ZrO?/bagasse fly ash catalyst. International Journal of
Technology, 14(1), 206–218. https://doi.org/10.14716/ijtech.v14i1.4873
Saputera, W. H., Yuniar, G., & Sasongko, D. (2024). Light-driven
methane conversion: Unveiling methanol using a TiO2/TiOF2 photocatalyst. RSC
Advances, 14, 8740–8751. https://doi.org/10.1039/d4ra00353e
Sun, R., Peng, X., Yu, D., & Chen, Y. (2023). Band structure tuning
of Zr/C3N4 photocatalysts via thermal processing for enhanced visible-light
activity. Journal of Materials Chemistry A, 11(12), 5802–5811. https://doi.org/10.1039/D3TA00652K
Wahyudi, F., Saputera, W. H., Sasongko, D., & Devianto, H. (2023).
Recent advances in the development of photocatalytic technology for nitrate
reduction to ammonia. Case Studies in Chemical and Environmental
Engineering, 8, 100478. https://doi.org/10.1016/j.cscee.2023.100478
Wang, C. W. (2017). Recent advances of graphitic carbon nitride-based
structures and applications in catalyst, sensing, imaging, and LEDs. Nano-Micro
Letters, 8, 21–22. https://doi.org/10.1007/s40820-017-0148-2
Wang, Y., Liu, Z., Chen, W., & Feng, H. (2023). Effect of zro particle sintering on the photocatalytic no reduction efficiency of Zr/g-C3N4
composites. Journal of Environmental Chemical Engineering, 11(2),
109833. https://doi.org/10.1016/j.jece.2023.109833
Whulanza, Y., Kusrini, E., Hermansyah, H., Sudibandriyo, M., Sahlan,
M., & Kartohardjono, S. (2024). Catalyzing clean energy: The role of
hydrogen and ammonia technology processes. International Journal of
Technology, 15(4), 803–811. https://doi.org/10.14716/ijtech.v15i4.7171
Yang, H., Zhang, W., Chen, Y., & Sun, C. (2019). Modified
Langmuir–Hinshelwood model for NO photocatalytic degradation on semiconductors:
A review. Environmental Science: Nano, 6(7), 2021–2035. https://doi.org/10.1039/C9EN00330J
Yang, M., & Xu, Y.-J. (2014). Visible-light-driven photocatalysis
on graphene-based materials. Journal of Materials Chemistry A, 2(29),
10733–10753. https://doi.org/10.1039/C4TA00957A
Yi, J., El-Alami, W., Song, Y., Li, H., Ajayan, P. M., & Xu, H.
(2019). Emerging surface strategies on graphitic carbon nitride for
solar-driven water splitting. Chemical Engineering Journal, 382, 122812.
https://doi.org/10.1016/j.cej.2019.122812
Yu, M., Chang, S., Ma, L., Wu, X., Yan, J., Ding, Y., Zhang, X.,
Carabineiro, S., & Lv, K. (2025). Remarkable improvement in photocatalytic
activity of g-C3N4 for NO oxidation through surface hydroxylation. Separation
and Purification Technology, 354, 128695. https://doi.org/10.1016/j.seppur.2024.128695
Yu, Q., & Brouwers, H. J. H. (2009). Indoor air purification using
heterogeneous photocatalytic oxidation. Part I: Experimental study. Applied
Catalysis B: Environmental, 92, 454–461. https://doi.org/10.1016/j.apcatb.2009.09.004
Zhang, J., Zhu, Z., Tang,
Y., & Leung, D. Y. C. (2014). Photocatalytic degradation of NOxusingg ?
C3N4: Effects of morphology and reaction mechanism. Applied Catalysis B:
Environmental, 160–161, 408–415. https://doi.org/10.1016/j.apcatb.2014.05.010
Zhang, L., Jin, Z., Huang,
S., Zhang, Y., Zhang, M., Zeng, Y.-J., & Ruan, S. (2019). Ce-doped
graphitic carbon nitride derived from metal-organic frameworks as a visible
light-responsive photocatalyst for H2 production. Nanomaterials, 9 (11), 1539.
https://doi.org/10.3390/nano9111539
Zhang, X., Kong, R. M.,
Du, H., Xia, L., & Qu, F. (2018). Highly efficient electrochemical ammonia
synthesis via nitrogen reduction reactions on a vn nanowire array under ambient
conditions. Journal of Chemical, 54, 5323–5325. https://doi.org/10.1039/C8CC00459E
Zhanyong, Y., Jin, M.,
Wang, X., Zhi, R., Yang, J., Hao, H., Zhang, S., Zhou, E., & Yin, S.
(2023). Recent advances in g-C3N4-based photocatalysts for NOx removal. Catalysts,
13 (1), 132–192. https://doi.org/10.3390/catal13010192
Zhao, Y., Wang, Y., &
Chen, F. (2021). Toward sustainable nitrogen cycle: Recovery of ammonia from
NOx via photocatalysis. Chemical Engineering Journal, 420, 127655. https://doi.org/10.1016/j.cej.2020.127655
Zhou, M., Ou, H., Li, S., Qin, X., Fang, Y., Lee, S., Wang, X., & Ho, W. (2021). Photocatalytic air purification using functional polymeric carbon nitrides. Journal of Science, 8, 210–237. https://doi.org/10.1002/advs.202102376