• International Journal of Technology (IJTech)
  • Vol 16, No 6 (2025)

Natural Gas Sweetening via Membrane-Assisted Gas Absorption Part 2: A Hollow-Fiber Unit with Dimethyl Diethanolammonium Glycinate-based Absorbent

Natural Gas Sweetening via Membrane-Assisted Gas Absorption Part 2: A Hollow-Fiber Unit with Dimethyl Diethanolammonium Glycinate-based Absorbent

Title: Natural Gas Sweetening via Membrane-Assisted Gas Absorption Part 2: A Hollow-Fiber Unit with Dimethyl Diethanolammonium Glycinate-based Absorbent
Maria E Atlaskina, Anton N Petukhov, Artem A Atlaskin, Kirill A Smorodin, Dmitriy M Zarubin, Nikita S Tsivkovsky, Sergey S Kryuchkov, Anna N Stepakova, Andrey V Vorotyntsev, Olga V Kazarina, Sergey S Suvorov, Ekaterina A Stepanova, Ilya V Vorotyntsev

Corresponding email:


Cite this article as:
Atlaskina, M., Petukhov, A., Atlaskin, A., Smorodin, K., Zarubin, D., Tsivkovsky, N., Kryuchkov, S., Stepakova, A., Vorotyntsev, A., Kazarina, O., Suvorov, S., Stepanova, E., & Vorotyntsev, I. (2025). Natural gas sweetening via membrane-assisted gas absorption part 2: A hollow-fiber unit with dimethyl diethanolammonium glycinate-based absorbent. International Journal of Technology, 16 (6), 2025–2042.

9
Downloads
Maria E Atlaskina Mendeleev University of Chemical Technology of Russia, Miusskaya square, 9, Moscow, 125047 Russia
Anton N Petukhov 1. Mendeleev University of Chemical Technology of Russia, Miusskaya square, 9, Moscow, 125047 Russia 2. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Ru
Artem A Atlaskin Mendeleev University of Chemical Technology of Russia, Miusskaya square, 9, Moscow, 125047 Russia
Kirill A Smorodin Mendeleev University of Chemical Technology of Russia, Miusskaya square, 9, Moscow, 125047 Russia
Dmitriy M Zarubin 1. Mendeleev University of Chemical Technology of Russia, Miusskaya square, 9, Moscow, 125047 Russia 2. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Ru
Nikita S Tsivkovsky Mendeleev University of Chemical Technology of Russia, Miusskaya square, 9, Moscow, 125047 Russia
Sergey S Kryuchkov Mendeleev University of Chemical Technology of Russia, Miusskaya square, 9, Moscow, 125047 Russia
Anna N Stepakova Mendeleev University of Chemical Technology of Russia, Miusskaya square, 9, Moscow, 125047 Russia
Andrey V Vorotyntsev Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia
Olga V Kazarina 1. Mendeleev University of Chemical Technology of Russia, Miusskaya square, 9, Moscow, 125047 Russia 2. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Ru
Sergey S Suvorov Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia
Ekaterina A Stepanova Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia
Ilya V Vorotyntsev Mendeleev University of Chemical Technology of Russia, Miusskaya square, 9, Moscow, 125047 Russia
Email to Corresponding Author

Abstract
Natural Gas Sweetening via Membrane-Assisted Gas Absorption Part 2: A Hollow-Fiber Unit with Dimethyl Diethanolammonium Glycinate-based Absorbent

The present study deals with the continuation of the development, enhancement, and optimization of a novel hybrid separation method – membrane assisted gas absorption, which is designed for the removal of acid gases from natural gas processing. The second part focuses on the design of absorbent solutions and their application in the proposed technique to increase the efficiency of acid gas removal and decrease the losses of hydrocarbons. Absorbent systems based on methyldiethanolamine aqueous solutions and containing a novel ionic liquid, dimethyl diethanolammonium glycinate, were proposed and comprehensively studied in terms of the properties that affect the mass transfer rate: sorption capacity, viscosity, and density. As a result of that complex absorbents study, its optimal composition was determined for further separation tests in a membrane-assisted gas absorption unit. On the example of the model ternary gas mixture and quasi-real natural gas separation, the proposed technique provides efficient separation. It not only reduces the concentration of acid gases up to 0.75 mol% but also allows the recovery of 99% of hydrocarbons as a product flow.


Gas separation; Hollow fibers; Ionic liquids; Membrane-assisted gas absorption; Natural gas sweetening

Supplementary Material
FilenameDescription
R2-CE-7625-20250502185339.pdf ---
References

Aghel, B., Janati, S., Wongwises, S., & Shadloo, M. (2022). Review on CO2 capture by blended amine solutions. International Journal of Greenhouse Gas Control, 119, 103715. https://doi.org/10.1016/j.ijggc.2022.103715

Ahmady, A., Hashim, M., & Aroua, M. (2010). Experimental investigation on the solubility and initial rate of absorption of CO2 in aqueous mixtures of methyldiethanolamine with the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate. Journal of Chemical and Engineering Data, 55 (12), 5733–5738. https://doi.org/10.1021/je1006949

Akhmetshina, A., Gumerova, O., Atlaskin, A., Petukhov, A., Sazanova, T., Yanbikov, N., Nyuchev, A., Razov, E., & Vorotyntsev, I. (2017). Permeability and selectivity of acid gases in supported conventional and novel imidazolium-based ionic liquid membranes. Separation and Purification Technology, 176, 92–106. https://doi.org/10.1016/j.seppur.2016.11.074

Akhmetshina, A., Petukhov, A., Gumerova, O., Vorotyntsev, A., Nyuchev, A., & Vorotyntsev, I. (2019). Solubility of H2S and CO2 in imidazolium-based ionic liquids with bis(2-ethylhexyl) sulfosuccinate anion. Journal of Chemical Thermodynamics, 130, 173–182. https://doi.org/10.1016/j.jct.2018.10.013

Akhmetshina, A., Petukhov, A., Vorotyntsev, A., Nyuchev, A., & Vorotyntsev, I. (2017). Absorption behavior of acid gases in protic ionic liquid/alkanolamine binary mixtures. ACS Sustainable Chemistry & Engineering, 5 (4), 3429–3437. https://doi.org/10.1021/acssuschemeng.7b00092

Anggerta, L., Kurniawansyah, F., Tetrisyanda, R., & Wibawa, G. (2025). Catalytic synthesis of diethyl carbonate from carbon dioxide using catalyst KI/EtONa with propylene oxide as dehydration agent and process optimization based on Box–Behnken design. International Journal of Technology, 16 (1), 243–254. https://doi.org/10.14716/ijtech.v16i1.6417

Anselmi, H., Mirgaux, O., Bounaceur, R., & Patisson, F. (2019). Simulation of post-combustion CO2 capture: A comparison among absorption, adsorption and membranes. Chemical Engineering & Technology, 42 (4), 797–804. https://doi.org/10.1002/ceat.201800667

Atlaskin, A., Kryuchkov, S., Smorodin, K., Markov, A., Kazarina, O., Zarubin, D., Atlaskina, M., Vorotyntsev, A., Nyuchev, A., Petukhov, A., & Vorotyntsev, I. (2021). Towards the potential of trihexyltetradecylphosphonium indazolide with aprotic heterocyclic ionic liquid as an efficient absorbent for membrane-assisted gas absorption technique for acid gas removal applications. Separation and Purification Technology, 257, 117835. https://doi.org/10.1016/j.seppur.2020.117835

Atlaskin, A., Kryuchkov, S., Yanbikov, N., Smorodin, K., Petukhov, A., Trubyanov, M., Vorotyntsev, V., & Vorotyntsev, I. (2020). Comprehensive experimental study of acid gases removal process by membrane-assisted gas absorption using imidazolium ionic liquids solutions absorbent. Separation and Purification Technology, 239, 116578. https://doi.org/10.1016/j.seppur.2020.116578

Atlaskina, M., Markin, Z., Smorodin, K., Kryuchkov, S., Tsivkovsky, N., Petukhov, A., Atlaskin, A., Kazarina, O., Vorotyntsev, A., & Vorotyntsev, I. (2025). Optimized co2 cycloaddition to epichlorohydrin catalyzed by ionic liquid with microwave and ultrasonic irradiation. International Journal of Technology, 16 (2), 378–394. https://doi.org/10.14716/ijtech.v16i2.7500

Atlaskina, M., Atlaskin, A., Kazarina, O., Petukhov, A., Zarubin, D., Nyuchev, A., Vorotyntsev, A., & Vorotyntsev, I. (2021). Synthesis and comprehensive study of quaternary-ammonium-based sorbents for natural gas sweetening. Environments, 8 (12), 134. https://doi.org/10.3390/environments8120134

Atlaskina, M., Kazarina, O., Petukhov, A., Atlaskin, A., Tsivkovsky, N., Tiuleanu, P., Malysheva, Y., Lin, H., Zhong, G., Lukoyanov, A., Vorotyntsev, A., & Vorotyntsev, I. (2023). Amino acid-based ionic liquid as a promising co2 sorption increasing agent by aqueous mdea solution. Journal of Molecular Liquids, 395, 123635. https://doi.org/10.1016/j.molliq.2023.123635

Bahadori, A. (2014). Natural gas processing: Technology and engineering design. Elsevier. https://doi.org/10.1016/C2013-0-13070-X

Baker, R. (2002). Future directions of membrane gas separation technology. Industrial & Engineering Chemistry Research, 41 (6), 1393–1411. https://doi.org/10.1021/ie0108088

Baker, R., & Lokhandwala, K. (2008). Natural gas processing with membranes: An overview. Industrial & Engineering Chemistry Research, 47 (7), 2109–2121. https://doi.org/10.1021/ie071083w

Banat, F., Younas, O., & Didarul, I. (2014). Energy and exergical dissection of a natural gas sweetening plant using methyldiethanol amine (mdea) solution. Journal of Natural Gas Science and Engineering, 16, 1–7. https://doi.org/10.1016/j.jngse.2013.10.005

Belaissaoui, B., Willson, D., & Favre, E. (2012). Membrane gas separations and post-combustion carbon dioxide capture: Parametric sensitivity and process integration strategies. Chemical Engineering Journal, 211–212, 122–132. https://doi.org/10.1016/j.cej.2012.09.012

Bernardo, P., Drioli, E., & Golemme, G. (2009). Membrane gas separation: A review/state of the art. Industrial & Engineering Chemistry Research, 48 (10), 4638–4663. https://doi.org/10.1021/ie8019032   

Cheng, S., Wen, S., Zhao, J., Zhao, C., Li, W., Li, S., & Zhang, D. (2017). Mechanism and kinetics study of co2 absorption into blends of mdea and [c2ohmim][gly] aqueous solution. Energy & Fuels, 31 (11), 12425–12433. https://doi.org/10.1021/acs.energyfuels.7b01942

Donaldson, T., & Nguyen, Y. (1980). Carbon dioxide reaction kinetics and transport in aqueous amine membranes. Industrial & Engineering Chemistry Fundamentals, 19 (3), 260–266. https://doi.org/10.1021/i160075a005

Duval, S. (2023). Natural gas sweetening. In Q. Wang (Ed.), Surface process, transportation, and storage (Vol. 4, pp. 37–78). Gulf Professional Publishing. https://doi.org/10.1016/B978-0-12-823891-2.00007-7

Feng, Z., Fang, C., Wu, Y., Wang, Y., Li, A., & Zhang, Z. (2010). Absorption of CO2 in aqueous solutions of functionalized ionic liquids and MDEA. Chemical Engineering Journal, 160(2), 691–697. https://doi.org/10.1016/j.cej.2010.04.013

Feng, Z., Ma, J., Zhou, Z., Wu, Y., & Zhang, Z. (2012). Study on the absorption of carbon dioxide in high concentrated MDEA and ILs solutions. Chemical Engineering Journal, 181–182, 222–228. https://doi.org/10.1016/j.cej.2011.11.066

Flores, R. (2014). Coalification, gasification, and gas storage. In R. M. Flores (Ed.), Coal and coalbed gas (pp. 167–233). Elsevier. https://doi.org/10.1016/B978-0-12-396972-9.00004-5

Fu, D., Zhang, P., & Wang, L. (2016). Absorption performance of CO2 in high concentrated [BMIM][Lys]-MDEA aqueous solution. Energy, 113, 1–8. https://doi.org/10.1016/j.energy.2016.07.049   

Hadri, N., Quang, D., & Abu-Zahra, M. (2015). Study of novel solvent for CO2 post-combustion capture. Energy Procedia, 75, 2268–2286. https://doi.org/10.1016/j.egypro.2015.07.414

Hatchell, D., Namjoshi, O., Fischer, K., & Rochelle, G. (2014). Thermal degradation of linear amines for CO2 capture. Energy Procedia, 63, 1558–1568. https://doi.org/10.1016/j.egypro.2014.11.165

Ibrahim, M., El-Naas, M., Zhang, Z., & Van Der Bruggen, B. (2018). CO2 capture using hollow fiber membranes: A review of membrane wetting. Energy & Fuels, 32(2), 963–978. https://doi.org/10.1021/acs.energyfuels.7b03493

Islam, M., Yusoff, R., Si Ali, B., Islam, M., & Chakrabarti, B. (2011). Degradation studies of amines and alkanolamines during sour gas treatment process. International Journal of the Physical Sciences, 6(24), 5877–5890. https://doi.org/10.5897/ijps11.237

Kartohardjono, S., Paramitha, A., Putri, A., & Andriant, R. (2017). Effects of absorbent flow rate on CO2 absorption through a super hydrophobic hollow fiber membrane contactor. International Journal of Technology, 8(8), 1429–1435. https://doi.org/10.14716/ijtech.v8i8.679

Kryuchkov, S., Smorodin, K., Stepakova, A., Atlaskin, A., Tsivkovsky, N., Atlaskina, M., Tolmacheva, M., Kazarina, O., Petukhov, A., Vorotyntsev, A., & Vorotyntsev, I. (2024). Membrane air separation process simulation: Insight in modelling approach based on ideal and mixed permeance values. International Journal of Technology, 15(5), 1218–1236. https://doi.org/10.14716/ijtech.v15i5.6987

Kryuchkov, S., Petukhov, A., & Atlaskin, A. (2021). Experimental evaluation of the membrane-assisted gas absorption technique efficiency using an aqueous solution of PEG-400 for the ammonia capture. IOP Conference Series: Earth and Environmental Science, 666(5), 052071. https://doi.org/10.1088/1755-1315/666/5/052071

Kusrini, E., Sasongko, A., Nasruddin, N., & Usman, A. (2017). Improvement of carbon dioxide capture using graphite waste/Fe3O4 composites. International Journal of Technology, 8(8), 1436–1444. https://doi.org/10.14716/ijtech.v8i8.697

Li, K., Leigh, W., Feron, P., Yu, H., & Tade, M. (2016). Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements. Applied Energy, 165, 648–659. https://doi.org/10.1016/j.apenergy.2015.12.109

Li, M., Zhang, P., Chen, G., & Fu, D. (2023). The performance and mechanism of CO2 desorption and corrosion in N-methyldiethanolamine aqueous solutions blended with amino acid ionic liquids. International Journal of Greenhouse Gas Control, 125, 103875. https://doi.org/10.1016/j.ijggc.2023.103875

Mechergui, A., Akhmetshina, A., Kazarina, O., Atlaskina, M., Petukhov, A., & Vorotyntsev, I. (2020). Acidic gases solubility in bis(2-ethylhexyl) sulfosuccinate based ionic liquids using the predictive thermodynamic model. Membranes, 10(12), 429. https://doi.org/10.3390/membranes10120429   

Merkel, T., Lin, H., Wei, X., & Baker, R. (2010a). Power plant post-combustion carbon dioxide capture: An opportunity for membranes. Journal of Membrane Science, 359(1–2), 126–139. https://doi.org/10.1016/j.memsci.2009.10.041

Merkel, T., Lin, H., Wei, X., & Baker, R. (2010b). Power plant post-combustion carbon dioxide capture: An opportunity for membranes. Journal of Membrane Science, 359(1–2), 126–139. https://doi.org/10.1016/j.memsci.2009.10.041

Mokhatab, S., Poe, W., & Mak, J. (2019). Natural gas fundamentals. In S. Mokhatab, W. A. Poe, & J. Y. Mak (Eds.), Handbook of natural gas transmission and processing (4th ed., pp. 1–35). Gulf Professional Publishing. https://doi.org/10.1016/B978-0-12-815817-3.00001-0  

Muharam, Y., Kusrini, E., Saubryani, N., & Ulfa, M. (2018). Simulation of MOF-based adsorbed natural gas storage tank. International Journal of Technology, 9(2), 412–421. https://doi.org/10.14716/ijtech.v9i2.1100

Nozaeim, A., Tavasoli, A., Mortaheb, H., & Mafi, M. (2020). CO2 absorption/desorption in DEEA/MDEA and hybrids with sulfolane. Journal of Natural Gas Science and Engineering, 76, 103219. https://doi.org/10.1016/j.jngse.2020.103219

Petukhov, A., Atlaskin, A., Kryuchkov, S., Smorodin, K., Zarubin, D., Petukhova, A., Atlaskina, M., Nyuchev, A., Vorotyntsev, A., Trubyanov, M., Vorotyntsev, I., & Vorotynstev, V. (2020). Membrane-assisted gas absorption for ammonia recovery. Chemical Engineering Journal, 421, 127726. https://doi.org/10.1016/j.cej.2020.127726

Petukhov, A., Atlaskin, A., Kryuchkov, S., Smorodin, K., Zarubin, D., Petukhova, A., Atlaskina, M., Nyuchev, A., Vorotyntsev, A., Trubyanov, M., Vorotyntsev, I., & Vorotynstev, V. (2021). Membrane-assisted gas absorption for ammonia recovery. Chemical Engineering Journal, 421, 127726. https://doi.org/10.1016/j.cej.2020.127726

Poe, W., & Mokhatab, S. (2017). Introduction to natural gas processing plants. In Modeling, control, and optimization of natural gas processing plants (pp. 1–72). Gulf Professional Publishing. https://doi.org/10.1016/B978-0-12-802961-9.00001-2    

Sanaeepur, H., Amooghin, A., Bandehali, S., Moghadassi, A., Matsuura, T., & Van der Bruggen, B. (2019). Polyimides in membrane gas separation. Progress in Polymer Science, 91, 80–125. https://doi.org/10.1016/j.progpolymsci.2019.02.001  

Shohrat, A., Zhang, M., Hu, H., Yang, X., Liu, L., & Huang, H. (2022). CO2 capture mechanism of ionic liquids from TFA blended with MEA and MDEA. International Journal of Greenhouse Gas Control, 119, 103709. https://doi.org/10.1016/j.ijggc.2022.103709

Swatloski, R., Holbrey, J., & Rogers, R. (2003). Ionic liquids are not always green: Hydrolysis of BMIM-PF6. Green Chemistry, 5(4), 361–363. https://doi.org/10.1039/B304400A

Vorotyntsev, I., Atlaskin, A., Trubyanov, M., Petukhov, A., Gumerova, O., Akhmetshina, A., & Vorotyntsev, V. (2017). Absorbing pervaporation for gas separation using ionic liquids. Desalination and Water Treatment, 75, 305–313. https://doi.org/10.5004/dwt.2017.20400

Vorotyntsev, I., Drozdov, P., Shablikin, D., & Gamajunova, T. (2006). Ammonia separation by absorbing pervaporation. Desalination, 200(1–3), 379–380. https://doi.org/10.1016/j.desal.2006.03.382

Vorotyntsev, V., Drozdov, P., Vorotyntsev, I., & Murav’Ev, D. (2006). Fine gas purification using membrane module with feed reservoir. Doklady Chemistry, 411(5), 243–245. https://doi.org/10.1134/S0012500806120068

Zhao, Y., Zhang, X., Zeng, S., Zhou, Q., Dong, H., Tian, X., & Zhang, S. (2010). Density, viscosity, and CO2 capture performance in amine + ionic liquid + water systems. Journal of Chemical & Engineering Data, 55(8), 3513–3519. https://doi.org/10.1021/je100078w