• International Journal of Technology (IJTech)
  • Vol 16, No 6 (2025)

Synthesis of a Polyvinylidene Fluoride Membrane with Polyethylene Glycol Additive for the Waste-water Treatment of Batik Industry

Synthesis of a Polyvinylidene Fluoride Membrane with Polyethylene Glycol Additive for the Waste-water Treatment of Batik Industry

Title:

Synthesis of a Polyvinylidene Fluoride Membrane with Polyethylene Glycol Additive for the Waste-water Treatment of Batik Industry

Sutrasno Kartohardjono, Eva Fathul Karamah, Arifina Febriasari, Sherlyta Estella, Michael Gabriel Owen, Nickyta Tanryan

Corresponding email:


Cite this article as:
Kartohardjono, S., Karamah, E., Febriasari, A., Estella, S., Owen, M., & Tanryan, N. (2025). Synthesis of a polyvinylidene fluoride membrane with polyethylene glycol additive for the waste-water treatment of batik industry. International Journal of Technology, 16 (6), 1969–1984.

11
Downloads
Sutrasno Kartohardjono Process Intensification Laboratory, Chemical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia
Eva Fathul Karamah Process Intensification Laboratory, Chemical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia
Arifina Febriasari Chemical Engineering Department, Faculty of Engineering, Universitas Serang Raya, Serang, Indonesia
Sherlyta Estella Process Intensification Laboratory, Chemical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia
Michael Gabriel Owen Process Intensification Laboratory, Chemical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia
Nickyta Tanryan Process Intensification Laboratory, Chemical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia
Email to Corresponding Author

Abstract
<p>Synthesis of a Polyvinylidene Fluoride Membrane with Polyethylene Glycol Additive for the Waste-water Treatment of Batik Industry</p>

Polyvinylidene fluoride (PVDF) is a polymer widely used to prepare ultrafiltration membranes. However, PVDF membranes are hydrophobic; therefore, they have poor antifouling ability in filtration. Therefore, this study will modify PVDF membranes using N, N dimethyl acetamide (DMAc) solvents with polyethylene glycol (PEG) additives. The flat sheet membrane was prepared using the immersion precipitation method with PEG masses of 0, 0.5, 1, and 1.5 grams. The prepared membranes were then characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), contact angle, porosity, and tensile tests. Before being used as filtration feed, batik liquid waste was pretreated with PAC (poly aluminum chloride) coagulation-flocculation pretreatment. Furthermore, the batik liquid waste was filtered using PVDF/PEG membranes with feed pressures of 3, 4, and 5 bars. The permeate flux increased with the addition of PEG mass in the printing solution and operating pressure, ranging from 3.92 to 38.02 L/m2.h. However, this increase in flux decreased rejection because of the larger pore size, which allowed large particles to pass through the membrane. Rejection of TDS (Total Dissolved Solid), total suspended solid (TSS), turbidity, chemical oxygen demand (COD), and permeate color were in the range of 2.3%–9.3%, 0%–88.9%, 20.7%–65.5%, 44.5%–63.8%, and 18.3%–72.9%, respectively.

Flux; PEG; PVDF; Rejection; Ultrafiltration

Supplementary Material
FilenameDescription
R2-CE-7548-20251003134326.pdf ---
References

Abdulsalam, M., Che Man, H., Goh, P., Yunos, K., Abidin, Z., Isma, M., & Ismail, A. (2020). Permeability and antifouling augmentation of a hybrid PVDF–PEG membrane using nano-magnesium oxide as a powerful mediator for POME decolorization. Polymers, 12. https://doi.org/10.3390/polym12030549

Abid, M., Gzara, L., Wahab, R., Ahmed, I., Baig, N., Shamim, A., & Salam, M. (2024). Surface modification for enhanced anti-wetting properties of electrospun omniphobic membranes in membrane distillation. Journal of Applied Polymer Science, 141. https://doi.org/10.1002/app.55739

Ali, I., Bamaga, O. A., Gzara, L., Bassyouni, M., Abdel-Aziz, M. H., Soliman, M. F., Drioli, E., & Albeirutty, M. (2018). Assessment of blend PVDF membranes, and the effect of polymer concentration and blend composition [PubMed ID: 29510555]. Membranes, 8(1), 13. https://doi.org/10.3390/membranes8010013

Apriyanti, E., Susanto, H., & Widiasa, I. (2024). Preparation and performance evaluation of TiO?-incorporated fly ash–kaolin ceramic membrane for oil/water separation. International Journal of Technology, 15, 1959. https://doi.org/10.14716/ijtech.v15i6.6294

Basko, A., Lebedeva, T., Yurov, M., Ilyasova, A., Elyashevich, G., Lavrentyev, V., Kalmykov, D., Volkov, A., & Pochivalov, K. (2023). Mechanism of PVDF membrane formation by NIPS revisited: Effect of precipitation bath nature and polymer–solvent affinity. Polymers, 15, 4307. https://doi.org/10.3390/polym15214307

Casetta, J., Virapin, E., Pochat-Bohatier, C., Bechelany, M., & Miele, P. (2023). Polymeric hollow fiber mixed matrix membranes: Mutual effect of graphene oxide and polyvinylpyrrolidone on nano-structuration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 681, 132805. https://doi.org/10.1016/j.colsurfa.2023.132805

Daud, N. M., Abdullah, S. R. S., Hasan, H. A., & Dhokhikah, Y. (2022). Integrated physical–biological treatment system for batik industry wastewater: A review on process selection. Science of the Total Environment, 819, 152931. https://doi.org/10.1016/j.scitotenv.2022.152931

Fadaei, A., Salimi, A., & Mirzataheri, M. (2014). Structural elucidation of morphology and performance of the PVDF/PEG membrane. Journal of Polymer Research, 21. https://doi.org/10.1007/s10965-014-0545-x

Febriasari, A., Huriya, Ananto, A., Suhartini, M., & Kartohardjono, S. (2021). Polysulfone–polyvinylpyrrolidone blend polymer composite membranes for batik industrial wastewater treatment. Membranes, 11, 66. https://doi.org/10.3390/membranes11010066

Gayatri, R., Syimir, A., Yuliwati, E., Mrsc, T. D. M. C., Jaafar, J., Zulkifli, M., Taweepreda, W., & Yahaya, A. (2023). Preparation and characterization of PVDF–TiO? mixed-matrix membrane with PVP and PEG as pore-forming agents for BSA rejection. Nanomaterials, 13, 1023. https://doi.org/10.3390/nano13061023

Guo, Y., Liu, C., Xu, W., Liu, G., Xiao, K., & Zhao, H.-Z. (2021). Interpenetrating network nanoarchitectonics of antifouling poly(vinylidene fluoride) membranes for oil–water separation. RSC Advances, 11(51), 31865–31876. https://doi.org/10.1039/D1RA05970J

Hansen, D. S., Bram, M. V., Lauridsen, S. M. Ø., & Yang, Z. (2021). Online quality measurements of total suspended solids for offshore reinjection: A review study. Energies, 14(4), 967. https://doi.org/10.3390/en14040967

Hebbar, R., Isloor, A., & Ismail, A. (2017). Contact angle measurements. In Membrane Characterization (pp. 219–255). Elsevier. https://doi.org/10.1016/B978-0-444-63776-5.00012-7

Huey Ping, N., Ahmad, A. L., Low, S. C., & Seng, O. (2014). The influence of PEG additive on the morphology of PVDF ultrafiltration membranes and its antifouling properties toward protein separation. Jurnal Teknologi, 70. https://doi.org/10.11113/jt.v70.3430

Ilyas, H., Shawuti, S., Siddiq, M., Niazi, J. H., & Qureshi, A. (2019). PEG-functionalized graphene oxide–silver nano-additive for enhanced hydrophilicity, permeability, and fouling resistance properties of PVDF-co-HFP membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 579, 123646. https://doi.org/10.1016/j.colsurfa.2019.123646

Ismail, N., Salleh, W., Ismail, A., Hasbullah, H., Yusof, N., Aziz, F., & Jaafar, J. (2020). Hydrophilic polymer-based membrane for oily wastewater treatment: A review. Separation and Purification Technology, 233, 116007. https://doi.org/10.1016/j.seppur.2019.116007

Jamil, P. A. S. M., Aziz, N. A., Bashir, M. J., Aziz, H. A., & Hung, Y.-T. (2024). Treatment of textile effluent. In Industrial Waste Engineering (pp. 43–86). Springer. https://doi.org/10.1007/978-3-031-46747-9_12

Kanegsberg, B., & Kanegsberg, E. (2011). Handbook for Critical Cleaning: Applications, Processes, and Controls. CRC Press. https://doi.org/10.1201/b10621

Kang, G.-D., & Cao, Y.-M. (2014). Application and modification of poly(vinylidene fluoride) membranes: A review. Journal of Membrane Science, 463, 145–165. https://doi.org/10.1016/j.memsci.2014.03.055

Kartohardjono, S., Karamah, E., Siahaan, G., Ghazali, T., & Lau, W. (2023). The simultaneous removal of NOx and SO? through a polysulfone hollow fiber membrane module. International Journal of Technology, 14, 576. https://doi.org/10.14716/ijtech.v14i3.5544

Kartohardjono, S., Karamah, E. F., Hayati, A. P., Talenta, G. N., Ghazali, T. A., & Lau, W. J. (2024). Effect of oxidants in the utilization of polysulfone hollow fiber membrane module as bubble reactor for simultaneous removal of NOx and SO?. International Journal of Technology, 15(1), 63–74. https://doi.org/10.14716/ijtech.v15i1.6415

Kartohardjono, S., Salsabila, G., Azzahra, R., Purnawan, I., & Lau, W. (2023). Preparation of PVDF–PVP composite membranes for oily wastewater treatment. Membranes, 13, 611. https://doi.org/10.3390/membranes13060611

Kusumawati, N., Rahmadyanti, E., & Sianita, M. (2021). Batik became two sides of blade for the sustainable development in Indonesia. In S. K. Sharma (Ed.), Green Chemistry and Water Remediation: Research and Applications (pp. 59–97). Elsevier. https://doi.org/10.1016/B978-0-12-817742-6.00003-7

Malmali, M., Askegaard, J., Sardari, K., Eswaranandam, S., Sengupta, A., & Wickramasinghe, S. R. (2018). Evaluation of ultrafiltration membranes for treating poultry processing wastewater. Journal of Water Process Engineering, 22, 218–226. https://doi.org/10.1016/j.jwpe.2018.02.010

Mousavi, S., & Kargari, A. (2022). Water recovery from reverse osmosis concentrate by commercial nanofiltration membranes: A comparative study. Desalination, 528, 115619. https://doi.org/10.1016/j.desal.2022.115619

Munawir, H., Kausar, M., Pratiwi, I., & Kholid Alghofari, A. (2024). Managing and mitigation of risk at Batik Laweyan during the COVID-19 pandemic. International Journal of Technology, 15, 561. https://doi.org/10.14716/ijtech.v15i3.5276

Nguyen, T. D. T., Altiok, E., Siekierka, A., Pietrelli, A., & Yalcinkaya, F. (2023). Preparation and characterization of microfiltration membrane by utilization of non-solvent induced phase separation technique. Journal of Membrane Science and Research, 9(2), 1995689. https://doi.org/10.22079/JMSR.2023.1995689.1594

Nishiyama, T., Sumihara, T., Sato, E., & Horibe, H. (2016). Effect of solvents on the crystal formation of poly(vinylidene fluoride) film prepared by spin-coating. Polymer Journal, 49. https://doi.org/10.1038/pj.2016.116

Polyakov, Y. S., & Zydney, A. L. (2013). Ultrafiltration membrane performance: Effects of pore blockage and constriction. Journal of Membrane Science, 434, 106–120. https://doi.org/10.1016/j.memsci.2013.01.052

Purnawan, I., Angputra, D., Debora, S., Karamah, E., Febriasari, A., & Kartohardjono, S. (2021). Polyvinylidene fluoride membrane with polyvinylpyrrolidone additive for tofu industrial wastewater treatment combined with coagulation–flocculation. Membranes, 11, 948. https://doi.org/10.3390/membranes11120948

Rahmawati, F., Permadani, I., & Pasha, D. (2016). Composite ZrO?–TiO? from local zircon sand used as photocatalyst for degradation of methylene blue in single batik dye wastewater. Bulletin of Chemical Reaction Engineering & Catalysis, 11, 133–139. https://doi.org/10.9767/bcrec.11.2.539.133-139

Ren, J., Zhou, J., & Deng, M. (2010). Morphology transition of asymmetric flat sheet and thickness-gradient membranes by wet phase-inversion process. Desalination, 253(1), 1–8. https://doi.org/10.1016/j.desal.2009.12.001

Sadeghi, I., Kaner, P., & Asatekin, A. (2018). Controlling and expanding the selectivity of filtration membranes. Chemistry of Materials, 30. https://doi.org/10.1021/acs.chemmater.8b03334

Shi, X., Tal, G., Hankins, N. P., & Gitis, V. (2014). Fouling and cleaning of ultrafiltration membranes: A review. Journal of Water Process Engineering, 1, 121–138. https://doi.org/10.1016/j.jwpe.2014.04.003

Sriyanti, I., Ramadhani, R. F., Almafie, M., Idjan, M., Syafri, E., Solihah, I., Sanjaya, M., Jauhari, J., & Fudholi, A. (2023). Physicochemical and mechanical properties of polyvinylidene fluoride nanofiber membranes. Case Studies in Chemical and Environmental Engineering, 9, 100588. https://doi.org/10.1016/j.cscee.2023.100588

Su, W.-C., Ho, J., Gettel, D., Rowland, A., Keating, C., & Parikh, A. (2023). Kinetic control of shape deformations and membrane phase separation inside giant vesicles. Nature Chemistry, 16, 1–9. https://doi.org/10.1038/s41557-023-01267-1

Subasi, Y., & Cicek, B. (2017). Recent advances in hydrophilic modification of PVDF ultrafiltration membranes—A review: Part I. Membrane Technology, 2017(10), 7–12. https://doi.org/10.1016/S0958-2118(17)30191-X

Uroševic, T., & Trivunac, K. (2020). Achievements in low-pressure membrane processes microfiltration and ultrafiltration for wastewater and water treatment. In Current Trends and Future Developments on (Bio-) Membranes (pp. 67–107). Elsevier. https://doi.org/10.1016/B978-0-12-817378-7.00003-3

Wongchitphimon, S., Wang, R., Jiraratananon, R., Shi, L., & Loh, C. H. (2011). Effect of polyethylene glycol as additive on fabrication of polyvinylidene fluoride-co-hexafluoropropylene asymmetric microporous hollow fiber membranes. Journal of Membrane Science, 369(1), 329–338. https://doi.org/10.1016/j.memsci.2010.12.008

Woo, S. H., Park, J., & Min, B. (2015). Relationship between permeate flux and surface roughness of membranes with similar water contact angle values. Separation and Purification Technology, 146. https://doi.org/10.1016/j.seppur.2015.03.048

Yeong Hwang, T., Chai, M., Ling Shing, W., Ong, M., & Rajamani, R. (2025). Optimizing microwave-assisted extraction of carbohydrate from Scenedesmus sp. cultivated in domestic wastewater. International Journal of Technology, 16, 255. https://doi.org/10.14716/ijtech.v16i1.7301

Zakaria, N., Rohani, R., Wan Mohtar, H., Purwadi, R., Sumampouw, G., & Indarto, A. (2023). Batik effluent treatment and decolorization: A review. Water, 15, 1339. https://doi.org/10.3390/w15071339

Zou, D., & Lee, Y. M. (2022). Design strategy of poly(vinylidene fluoride) membranes for water treatment. Progress in Polymer Science, 128. https://doi.org/10.1016/j.progpolymsci.2022.101535