Synthesis of a Polyvinylidene Fluoride Membrane with Polyethylene Glycol Additive for the Waste-water Treatment of Batik Industry
Published at : 01 Dec 2025
Volume : IJtech
Vol 16, No 6 (2025)
DOI : https://doi.org/10.14716/ijtech.v16i6.7548
| Sutrasno Kartohardjono | Process Intensification Laboratory, Chemical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia |
| Eva Fathul Karamah | Process Intensification Laboratory, Chemical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia |
| Arifina Febriasari | Chemical Engineering Department, Faculty of Engineering, Universitas Serang Raya, Serang, Indonesia |
| Sherlyta Estella | Process Intensification Laboratory, Chemical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia |
| Michael Gabriel Owen | Process Intensification Laboratory, Chemical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia |
| Nickyta Tanryan | Process Intensification Laboratory, Chemical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus UI, Depok 16424, Indonesia |
Polyvinylidene fluoride (PVDF) is a polymer widely used to prepare ultrafiltration membranes. However, PVDF membranes are hydrophobic; therefore, they have poor antifouling ability in filtration. Therefore, this study will modify PVDF membranes using N, N dimethyl acetamide (DMAc) solvents with polyethylene glycol (PEG) additives. The flat sheet membrane was prepared using the immersion precipitation method with PEG masses of 0, 0.5, 1, and 1.5 grams. The prepared membranes were then characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), contact angle, porosity, and tensile tests. Before being used as filtration feed, batik liquid waste was pretreated with PAC (poly aluminum chloride) coagulation-flocculation pretreatment. Furthermore, the batik liquid waste was filtered using PVDF/PEG membranes with feed pressures of 3, 4, and 5 bars. The permeate flux increased with the addition of PEG mass in the printing solution and operating pressure, ranging from 3.92 to 38.02 L/m2.h. However, this increase in flux decreased rejection because of the larger pore size, which allowed large particles to pass through the membrane. Rejection of TDS (Total Dissolved Solid), total suspended solid (TSS), turbidity, chemical oxygen demand (COD), and permeate color were in the range of 2.3%–9.3%, 0%–88.9%, 20.7%–65.5%, 44.5%–63.8%, and 18.3%–72.9%, respectively.
Flux; PEG; PVDF; Rejection; Ultrafiltration
| Filename | Description |
|---|---|
| R2-CE-7548-20251003134326.pdf | --- |
Abdulsalam, M., Che Man, H., Goh, P.,
Yunos, K., Abidin, Z., Isma, M., & Ismail, A. (2020). Permeability and
antifouling augmentation of a hybrid PVDF–PEG membrane using nano-magnesium
oxide as a powerful mediator for POME decolorization. Polymers, 12. https://doi.org/10.3390/polym12030549
Abid, M., Gzara, L., Wahab, R., Ahmed,
I., Baig, N., Shamim, A., & Salam, M. (2024). Surface modification for
enhanced anti-wetting properties of electrospun omniphobic membranes in
membrane distillation. Journal of Applied Polymer Science, 141. https://doi.org/10.1002/app.55739
Ali, I., Bamaga, O. A., Gzara, L.,
Bassyouni, M., Abdel-Aziz, M. H., Soliman, M. F., Drioli, E., & Albeirutty,
M. (2018). Assessment of blend PVDF membranes, and the effect of polymer
concentration and blend composition [PubMed ID: 29510555]. Membranes, 8(1),
13. https://doi.org/10.3390/membranes8010013
Apriyanti, E., Susanto, H., &
Widiasa, I. (2024). Preparation and performance evaluation of TiO?-incorporated
fly ash–kaolin ceramic membrane for oil/water separation. International
Journal of Technology, 15, 1959. https://doi.org/10.14716/ijtech.v15i6.6294
Basko, A., Lebedeva, T., Yurov, M.,
Ilyasova, A., Elyashevich, G., Lavrentyev, V., Kalmykov, D., Volkov, A., &
Pochivalov, K. (2023). Mechanism of PVDF membrane formation by NIPS revisited:
Effect of precipitation bath nature and polymer–solvent affinity. Polymers,
15, 4307. https://doi.org/10.3390/polym15214307
Casetta, J., Virapin, E.,
Pochat-Bohatier, C., Bechelany, M., & Miele, P. (2023). Polymeric hollow
fiber mixed matrix membranes: Mutual effect of graphene oxide and
polyvinylpyrrolidone on nano-structuration. Colloids and Surfaces A:
Physicochemical and Engineering Aspects, 681, 132805. https://doi.org/10.1016/j.colsurfa.2023.132805
Daud, N. M., Abdullah, S. R. S., Hasan,
H. A., & Dhokhikah, Y. (2022). Integrated physical–biological treatment
system for batik industry wastewater: A review on process selection. Science
of the Total Environment, 819, 152931. https://doi.org/10.1016/j.scitotenv.2022.152931
Fadaei, A., Salimi, A., & Mirzataheri, M. (2014). Structural
elucidation of morphology and performance of the PVDF/PEG membrane. Journal
of Polymer Research, 21. https://doi.org/10.1007/s10965-014-0545-x
Febriasari, A., Huriya, Ananto, A.,
Suhartini, M., & Kartohardjono, S. (2021). Polysulfone–polyvinylpyrrolidone
blend polymer composite membranes for batik industrial wastewater treatment. Membranes,
11, 66. https://doi.org/10.3390/membranes11010066
Gayatri, R., Syimir, A., Yuliwati, E.,
Mrsc, T. D. M. C., Jaafar, J., Zulkifli, M., Taweepreda, W., & Yahaya, A.
(2023). Preparation and characterization of PVDF–TiO? mixed-matrix membrane
with PVP and PEG as pore-forming agents for BSA rejection. Nanomaterials, 13,
1023. https://doi.org/10.3390/nano13061023
Guo, Y., Liu, C., Xu, W., Liu, G.,
Xiao, K., & Zhao, H.-Z. (2021). Interpenetrating network nanoarchitectonics
of antifouling poly(vinylidene fluoride) membranes for oil–water separation. RSC
Advances, 11(51), 31865–31876. https://doi.org/10.1039/D1RA05970J
Hansen, D. S., Bram, M. V., Lauridsen,
S. M. Ø., & Yang, Z. (2021). Online quality measurements of total suspended
solids for offshore reinjection: A review study. Energies, 14(4), 967. https://doi.org/10.3390/en14040967
Hebbar, R., Isloor, A., & Ismail,
A. (2017). Contact angle measurements. In Membrane Characterization (pp.
219–255). Elsevier. https://doi.org/10.1016/B978-0-444-63776-5.00012-7
Huey Ping, N., Ahmad, A. L., Low, S.
C., & Seng, O. (2014). The influence of PEG additive on the morphology of
PVDF ultrafiltration membranes and its antifouling properties toward protein
separation. Jurnal Teknologi, 70. https://doi.org/10.11113/jt.v70.3430
Ilyas, H., Shawuti, S., Siddiq, M.,
Niazi, J. H., & Qureshi, A. (2019). PEG-functionalized graphene
oxide–silver nano-additive for enhanced hydrophilicity, permeability, and
fouling resistance properties of PVDF-co-HFP membranes. Colloids and
Surfaces A: Physicochemical and Engineering Aspects, 579, 123646. https://doi.org/10.1016/j.colsurfa.2019.123646
Ismail, N., Salleh, W., Ismail, A.,
Hasbullah, H., Yusof, N., Aziz, F., & Jaafar, J. (2020). Hydrophilic
polymer-based membrane for oily wastewater treatment: A review. Separation
and Purification Technology, 233, 116007. https://doi.org/10.1016/j.seppur.2019.116007
Jamil, P. A. S. M., Aziz, N. A.,
Bashir, M. J., Aziz, H. A., & Hung, Y.-T. (2024). Treatment of textile
effluent. In Industrial Waste Engineering (pp. 43–86). Springer. https://doi.org/10.1007/978-3-031-46747-9_12
Kanegsberg, B., & Kanegsberg, E.
(2011). Handbook for Critical Cleaning: Applications, Processes, and
Controls. CRC Press. https://doi.org/10.1201/b10621
Kang, G.-D., & Cao, Y.-M. (2014).
Application and modification of poly(vinylidene fluoride) membranes: A review. Journal
of Membrane Science, 463, 145–165. https://doi.org/10.1016/j.memsci.2014.03.055
Kartohardjono, S., Karamah, E.,
Siahaan, G., Ghazali, T., & Lau, W. (2023). The simultaneous removal of NOx
and SO? through a polysulfone hollow fiber membrane module. International
Journal of Technology, 14, 576. https://doi.org/10.14716/ijtech.v14i3.5544
Kartohardjono, S., Karamah, E. F.,
Hayati, A. P., Talenta, G. N., Ghazali, T. A., & Lau, W. J. (2024). Effect
of oxidants in the utilization of polysulfone hollow fiber membrane module as
bubble reactor for simultaneous removal of NOx and SO?. International
Journal of Technology, 15(1), 63–74. https://doi.org/10.14716/ijtech.v15i1.6415
Kartohardjono, S., Salsabila, G.,
Azzahra, R., Purnawan, I., & Lau, W. (2023). Preparation of PVDF–PVP
composite membranes for oily wastewater treatment. Membranes, 13, 611. https://doi.org/10.3390/membranes13060611
Kusumawati, N., Rahmadyanti, E., &
Sianita, M. (2021). Batik became two sides of blade for the sustainable
development in Indonesia. In S. K. Sharma (Ed.), Green Chemistry and Water
Remediation: Research and Applications (pp. 59–97). Elsevier. https://doi.org/10.1016/B978-0-12-817742-6.00003-7
Malmali, M., Askegaard, J., Sardari,
K., Eswaranandam, S., Sengupta, A., & Wickramasinghe, S. R. (2018).
Evaluation of ultrafiltration membranes for treating poultry processing
wastewater. Journal of Water Process Engineering, 22, 218–226. https://doi.org/10.1016/j.jwpe.2018.02.010
Mousavi, S., & Kargari, A. (2022).
Water recovery from reverse osmosis concentrate by commercial nanofiltration
membranes: A comparative study. Desalination,
528, 115619. https://doi.org/10.1016/j.desal.2022.115619
Munawir, H., Kausar, M., Pratiwi, I., & Kholid Alghofari, A. (2024). Managing
and mitigation of risk at Batik Laweyan during the COVID-19 pandemic. International
Journal of Technology, 15, 561. https://doi.org/10.14716/ijtech.v15i3.5276
Nguyen, T. D. T., Altiok, E.,
Siekierka, A., Pietrelli, A., & Yalcinkaya, F. (2023). Preparation and
characterization of microfiltration membrane by utilization of non-solvent
induced phase separation technique. Journal of Membrane Science and
Research, 9(2), 1995689. https://doi.org/10.22079/JMSR.2023.1995689.1594
Nishiyama, T., Sumihara, T., Sato, E., & Horibe, H. (2016). Effect
of solvents on the crystal formation of poly(vinylidene fluoride) film prepared
by spin-coating. Polymer Journal, 49. https://doi.org/10.1038/pj.2016.116
Polyakov, Y. S., & Zydney, A. L.
(2013). Ultrafiltration membrane performance: Effects of pore blockage and
constriction. Journal of Membrane Science, 434, 106–120. https://doi.org/10.1016/j.memsci.2013.01.052
Purnawan, I., Angputra, D., Debora, S.,
Karamah, E., Febriasari, A., & Kartohardjono, S. (2021). Polyvinylidene
fluoride membrane with polyvinylpyrrolidone additive for tofu industrial
wastewater treatment combined with coagulation–flocculation. Membranes, 11,
948. https://doi.org/10.3390/membranes11120948
Rahmawati, F., Permadani, I., &
Pasha, D. (2016). Composite ZrO?–TiO? from local zircon sand used as
photocatalyst for degradation of methylene blue in single batik dye wastewater.
Bulletin of Chemical Reaction Engineering & Catalysis, 11, 133–139. https://doi.org/10.9767/bcrec.11.2.539.133-139
Ren, J., Zhou, J., & Deng, M. (2010). Morphology transition of
asymmetric flat sheet and thickness-gradient membranes by wet phase-inversion
process. Desalination, 253(1), 1–8. https://doi.org/10.1016/j.desal.2009.12.001
Sadeghi, I., Kaner, P., & Asatekin,
A. (2018). Controlling and expanding the selectivity of filtration membranes. Chemistry
of Materials, 30. https://doi.org/10.1021/acs.chemmater.8b03334
Shi, X., Tal, G., Hankins, N. P., &
Gitis, V. (2014). Fouling and cleaning of ultrafiltration membranes: A review. Journal
of Water Process Engineering, 1, 121–138. https://doi.org/10.1016/j.jwpe.2014.04.003
Sriyanti, I., Ramadhani, R. F.,
Almafie, M., Idjan, M., Syafri, E., Solihah, I., Sanjaya, M., Jauhari, J.,
& Fudholi, A. (2023). Physicochemical and mechanical properties of
polyvinylidene fluoride nanofiber membranes. Case Studies in Chemical and
Environmental Engineering, 9, 100588. https://doi.org/10.1016/j.cscee.2023.100588
Su, W.-C., Ho, J., Gettel, D., Rowland,
A., Keating, C., & Parikh, A. (2023). Kinetic control of shape deformations
and membrane phase separation inside giant vesicles. Nature Chemistry, 16,
1–9. https://doi.org/10.1038/s41557-023-01267-1
Subasi, Y., & Cicek, B. (2017).
Recent advances in hydrophilic modification of PVDF ultrafiltration membranes—A
review: Part I. Membrane Technology, 2017(10), 7–12. https://doi.org/10.1016/S0958-2118(17)30191-X
Uroševic, T., & Trivunac, K.
(2020). Achievements in low-pressure membrane processes microfiltration and
ultrafiltration for wastewater and water treatment. In Current Trends and
Future Developments on (Bio-) Membranes (pp. 67–107). Elsevier. https://doi.org/10.1016/B978-0-12-817378-7.00003-3
Wongchitphimon, S., Wang, R.,
Jiraratananon, R., Shi, L., & Loh, C. H. (2011). Effect of polyethylene
glycol as additive on fabrication of polyvinylidene
fluoride-co-hexafluoropropylene asymmetric microporous hollow fiber membranes. Journal
of Membrane Science, 369(1), 329–338. https://doi.org/10.1016/j.memsci.2010.12.008
Woo, S. H., Park, J., & Min, B.
(2015). Relationship between permeate flux and surface roughness of membranes
with similar water contact angle values. Separation and Purification
Technology, 146. https://doi.org/10.1016/j.seppur.2015.03.048
Yeong Hwang, T., Chai, M., Ling Shing,
W., Ong, M., & Rajamani, R. (2025). Optimizing microwave-assisted
extraction of carbohydrate from Scenedesmus sp. cultivated in domestic
wastewater. International Journal of Technology, 16, 255. https://doi.org/10.14716/ijtech.v16i1.7301
Zakaria, N., Rohani, R., Wan Mohtar, H., Purwadi, R., Sumampouw, G., & Indarto, A. (2023). Batik effluent treatment and decolorization: A review. Water, 15, 1339. https://doi.org/10.3390/w15071339
Zou, D., & Lee, Y. M. (2022). Design strategy of poly(vinylidene fluoride) membranes for water treatment. Progress in Polymer Science, 128. https://doi.org/10.1016/j.progpolymsci.2022.101535