Published at : 01 Dec 2025
Volume : IJtech
Vol 16, No 6 (2025)
DOI : https://doi.org/10.14716/ijtech.v16i6.7547
| Pramujo Widiatmoko | Department of Chemical Engineering, Faculty of Industrial Technology, Bandung Institute of Technology, Ganesha no. 10, Bandung, West Java, 40132, Indonesia |
| Hary Devianto | Department of Chemical Engineering, Faculty of Industrial Technology, Bandung Institute of Technology, Ganesha no. 10, Bandung, West Java, 40132, Indonesia |
| Silmia Nurul Aulia Irawan | Department of Chemical Engineering, Faculty of Industrial Technology, Bandung Institute of Technology, Ganesha no. 10, Bandung, West Java, 40132, Indonesia |
| Angela Maria Vinka | Department of Chemical Engineering, Faculty of Industrial Technology, Bandung Institute of Technology, Ganesha no. 10, Bandung, West Java, 40132, Indonesia |
| Ira Febrianty Sukmana | Department of Chemical Engineering, Faculty of Industrial Technology, Bandung Institute of Technology, Ganesha no. 10, Bandung, West Java, 40132, Indonesia |
| Wibawa Hendra Saputera | Department of Chemical Engineering, Faculty of Industrial Technology, Bandung Institute of Technology, Ganesha no. 10, Bandung, West Java, 40132, Indonesia |
| Mitra Eviani | 1. Department of Chemical Engineering, Faculty of Industrial Technology, Bandung Institute of Technology, Ganesha no. 10, Bandung, West Java, 40132, Indonesia 2. Center for Oil and Gas Testing, Minis |
| Tirto Prakoso | Department of Chemical Engineering, Faculty of Industrial Technology, Bandung Institute of Technology, Ganesha no. 10, Bandung, West Java, 40132, Indonesia |
The increasing concentration of CO2 in the atmosphere has contributed significantlyto global warming and its associated environmental effects. Electrochemical conversion hasemerged as a promising approach for CO2 capture, storage, and utilization to produce valueaddedchemicals. However, the inherently low solubility of CO2 in aqueous solutions presents amajor challenge to the efficiency of process. Unlike previous studies that focused on increasing CO2 solubility by lowering the temperature or using non-aqueous solvents, this work exploresthe use of smaller gas bubbles to enhance CO2 retention time in solution. The objective is toprolong the residence time of CO2 bubble in the electrolyte, allowing for gradual dissolution,sustained saturation, and improved interaction with the cathode surface. Under the same operatingvoltage, the bubble stone sparger, produces bubbles with diameters of 6.18 and 3.26-timesthan those generated by the atomizer and air stone, respectively, achieved 29.23% and 15.23%higher current efficiency. Similarly, the formic acid yield increased by 50.70% and 28.21%,compared to the other sparger types. The highest current efficiency (11.60%) and formic acidyield (0.122%) were obtained using the bubble stone sparger with a cathode length of 2.5 cm,a cathode-sparger distance of 0.5 cm, and an operating voltage of 6 V. These findings highlightthe potential of using smaller bubble sizes to improve the electrochemical reduction of CO2 byenhancing gas-liquid interaction and mass transfer performance.
CO2ER; Bubble size effect; Enhance performance
Anggerta,
L. A., Kurniawansyah, F., Tetrisyanda, R., & Wibawa, G. (2025). Catalytic
Synthesis of Diethyl Carbonate from Carbon Dioxide using Catalyst KI/EtONa with
Propylene Oxide as Dehydration Agent and Process Optimization Based on
Box-Behnken Design. International Journal of Technology, 16 1), 243–254. https://doi.org/10.14716/ijtech.v16i1.6417
Angulo, A., van der Linde, P., Gardeniers,
H., Modestino, M., & Fernández Rivas, D. (2020). Influence of
bubbles on the energy conversion efficiency of electrochemical reactors. Joule, 4(3), 555–579. https://doi.org/10.1016/j.joule.2020.01.005
Bagemihl, I., Bhatraju, C., van Ommen, J.
R., & van Steijn, V. (2022). Electrochemical Reduction of CO2 in
Tubular Flow Cells under Gas-Liquid Taylor Flow. ACS Sustainable Chemistry
& Engineering, 10(38), 12580–12587. https://doi.org/10.1021/acssuschemeng.2c03038
Bagotzky,
V. S. (2006). Fundamentals of electrochemistry (2nd ed.). Wiley-Interscience.
Bang,
J.-H., Song, K., Park, S., Jeon, C., Lee, S. W., & Kim, W. (2015). Effects
of CO2 Bubble Size, CO2 Flow Rate and Calcium Source on the Size and Specific
Surface Area of CaCO3 Particles. Energies,
8(10), 12304–12313. https://doi.org/10.3390/en81012304
Baumgartner, L. M., Kahn, A., Hoogland,
M., Bleeker, J., Jager, W. F., & Vermaas, D. A. (2023). Direct
Imaging of Local pH Reveals Bubble-Induced Mixing in a CO2 Electrolyzer. ACS
Sustainable Chemistry & Engineering, 11(28), 10430–10440. https://doi.org/10.1021/acssuschemeng.3c01773
Bulushev,
D. A., & Ross, J. R. H. (2018). Towards Sustainable Production of Formic
Acid. ChemSusChem, 11(5), 821–836. https://doi.org/10.1002/cssc.201702075
Chang, B., Pang, H., Raziq, F., Wang, S.,
Huang, K.-W., Ye, J., & Zhang, H. (2023). Electrochemical reduction
of carbon dioxide to multicarbon (C2+) products: Challenges and perspectives.
Energy & Environmental Science, 16(11), 4714–4758. https://doi.org/10.1039/D3EE00964E
Choi,
S., Jeong, S., Kim, H., Baek, I.-H., & Park, K. (2016). Electrochemical
reduction of carbon dioxide to formate on tin–lead alloys. ACS Sustainable
Chemistry & Engineering, 4(3), 1311–1318. https://doi.org/10.1021/acssuschemeng.5b01336
Daiyan, R., Lu, X., Ng, Y., & Amal, R.
(2017). Liquid hydrocarbon production from CO2: Recent development in
metal-based electrocatalysis. ChemSusChem, 10(22), 4342–4358. https://doi.org/10.1002/cssc.201701631
Duarah,
P., Haldar, D., Yadav, V., & Purkait, M. (2021). Progress in the
electrochemical reduction of CO2 to formic acid: A review on current trends and
future prospects. Journal of Environmental Chemical Engineering, 9(6), 106394. https://doi.org/10.1016/j.jece.2021.106394
Ewis,
D., Arsalan, M., Khaled, M., Pant, D., Ba-Abbad, M., Amhamed, A., &
El-Naas, M. (2023). Electrochemical reduction of CO2 into formate/formic acid:
A review of cell design and operation. Separation and Purification Technology,
316, 123811. https://doi.org/10.1016/j.seppur.2023.123811
Fan,
L., Xia, C., Zhu, P., Lu, Y., & Wang, H. (2020). Electrochemical CO2
reduction to high-concentration pure formic acid solutions in an
all-solid-state reactor. Nature Communications, 11(1), 3633. https://doi.org/10.1038/s41467-020-17403-1
Fang,
W., Guo, W., Lu, R., Yan, Y., Liu, X., Wu, D., Li, F., Zhou, Y., He, C., Xia,
C., Niu, H., Wang, S., Liu, Y., Mao, Y., Zhang, C., You, B., Pang, Y., Duan,
L., Yang, X., ... Xia, B. (2024). Durable CO2 conversion in the proton-exchange
membrane system. Nature, 626(7997), 86–91. https://doi.org/10.1038/s41586-023-06917-5
Gao,
G., Obasanjo, C., Crane, J., & Dinh, C.-T. (2023). Comparative analysis of
electrolyzers for electrochemical carbon dioxide conversion. Catalysis Today,
423, 114284. https://doi.org/10.1016/j.cattod.2023.114284
Gao,
T., Kumar, A., Shang, Z., Duan, X., Wang, H., Wang, S., Ji, S., Yan, D., Luo,
L., Liu, W., & Sun, X. (2019). Promoting electrochemical conversion of CO2
to formate with rich oxygen vacancies in nanoporous tin oxides. Chinese
Chemical Letters, 30(12), 2274–2278. https://doi.org/10.1016/j.cclet.2019.07.028
García,
H., & Mejia, N. (2021). Mathematical model of a bubble column for the
increased growth of Arthrospira platensis and the formation of phycocyanin.
International Journal of Technology, 12(2), 232. https://doi.org/10.14716/ijtech.v12i2.4256
Gemello,
L., Plais, C., Augier, F., Cloupet, A., & Marchisio, D. (2018).
Hydrodynamics and bubble size in bubble columns: Effects of contaminants and
spargers. Chemical Engineering Science, 184, 93–102. https://doi.org/10.1016/j.ces.2018.03.040
Hadi,
I., Yola, L., Hanifa, A., & Muzhaffar, M. (2025). Decarbonization strategy
towards net zero emission for international shipping on international shipping
routes in Indonesian archipelago sea lanes. International Journal of
Technology, 16(1), 8. https://doi.org/10.14716/ijtech.v16i1.7106
Institute
for Essential Services Reform. (2021). Climate transparency report 2021: Real
climate change impacts, Indonesia needs to increase its climate action
[Accessed 8 August 2024]. https://iesr.or.id/en/climate-transparency-report-2021-real-climate-change-impacts-indonesia-needs-to-increase-its-climate-action/
International
Energy Agency. (2024). CO2 emissions in 2023, a new record high, but is there
light at the end of the tunnel?
Irabien,
A., Alvarez-Guerra, M., Albo, J., & Dominguez-Ramos, A. (2018).
Electrochemical conversion of CO2 to value-added products. In Electrochemical
water and wastewater treatment (pp. 29–59). Elsevier. https://doi.org/10.1016/B978-0-12-813160-2.00002-X
Jia, S., Ma, X., Sun, X., & Han, B.
(2022). Electrochemical transformation of CO2 to value-added chemicals
and fuels. CCS Chemistry, 4(10), 3213–3229. https://doi.org/10.31635/ccschem.022.202202094
Kartohardjono, S., Karamah, E., Hayati,
A., Talenta, G., Ghazali, T., & Lau, W. (2024). Effect of oxidants
in the utilization of polysulfone hollow fiber membrane module as bubble
reactor for simultaneously removal of NOx and SO2. International Journal of
Technology, 15(1), 63. https://doi.org/10.14716/ijtech.v15i1.6415
Kim, B., Ma, S., Molly Jhong, H.-R., &
Kenis, P. (2015). Influence of dilute feed and pH on electrochemical
reduction of CO2 to CO on Ag in a continuous flow electrolyzer. Electrochimica
Acta, 166, 271–276. https://doi.org/10.1016/j.electacta.2015.03.064
Kumar, B., Llorente, M., Froehlich, J.,
Dang, T., Sathrum, A., & Kubiak, C. (2012). Photochemical and
photoelectrochemical reduction of CO2. Annual Review of Physical Chemistry, 63(1),
541–569. https://doi.org/10.1146/annurev-physchem-032511-143759
Liang,
C., Kim, B., Yang, S., Liu, Y., Woellner, C., Li, Z., Vajtai, R., Yang, W., Wu,
J., Kenis, P., & Ajayan, P. (2018). High efficiency electrochemical
reduction of CO2 beyond the two-electron transfer pathway on grain boundary
rich ultra-small SnO2 nanoparticles. Journal of Materials Chemistry A, 6(22),
10313–10319. https://doi.org/10.1039/C8TA01367E
Lin,
R., Guo, J., Li, X., Patel, P., & Seifitokaldani, A. (2020).
Electrochemical reactors for CO2 conversion. Catalysts, 10(5), 473. https://doi.org/10.3390/catal10050473
Liu,
C., & Tang, Y. (2019). Application research of micro and nano bubbles in
water pollution control. E3S Web of Conferences, 136, 06028. https://doi.org/10.1051/e3sconf/201913606028
Madani,
H., Wibowo, A., Sasongko, D., Miyamoto, M., Uemiya, S., & Budhi, Y. (2024).
Novel multiphase CO2 photocatalysis system using N-TiO2/CNCs and CO2
nanobubble. International Journal of Technology, 15(2), 432. https://doi.org/10.14716/ijtech.v15i2.6694
Marcandalli,
G., Monteiro, M., Goyal, A., & Koper, M. (2022). Electrolyte effects on CO2
electrochemical reduction to CO. Accounts of Chemical Research, 55(14),
1900–1911. https://doi.org/10.1021/acs.accounts.2c00080
Moret, S., Dyson, P., & Laurenczy, G.
(2014). Direct synthesis of formic acid from carbon dioxide by
hydrogenation in acidic media. Nature Communications, 5(1), 4017. https://doi.org/10.1038/ncomms5017
Moshtari,
B., Babakhani, E., & Moghaddas, J. (2009). Experimental study of gas
hold-up and bubble behaviour in gas-liquid column [No available DOI].
Mudassir,
R. (2021). Bauran energi, porsi pembangkit EBT tembus 12,77 persen [Accessed 8
August 2024]. https://ekonomi.bisnis.com/read/20211021/44/1456788/bauran-energi-porsi-pembangkit-ebt-tembus-1277-persen
Popov,
K., Djokic, S., & Grgur, B. (2005). Fundamental aspects of
electrometallurgy. Kluwer Academic/Plenum Publishers.
Ramadhan,
R., Mon, M., Tangparitkul, S., Tansuchat, R., & Agustin, D. (2024). Carbon
capture, utilization, and storage in Indonesia: An update on storage capacity,
current status, economic viability, and policy. Energy Geoscience, 5(4),
100335. https://doi.org/10.1016/j.engeos.2024.100335
Sacco,
A., Zeng, J., Bejtka, K., & Chiodoni, A. (2019). Modeling of gas
bubble-induced mass transport in the electrochemical reduction of carbon
dioxide on nanostructured electrodes. Journal of Catalysis, 372, 39–48. https://doi.org/10.1016/j.jcat.2019.02.016
Salvini,
C., Re Fiorentin, M., Risplendi, F., Raffone, F., & Cicero, G. (2022).
Active surface structure of SnO? catalysts for CO? reduction revealed by Ab
Initio simulations. The Journal of Physical Chemistry C, 126(34), 14441–14447. https://doi.org/10.1021/acs.jpcc.2c02583
Suwartha,
N., Syamzida, D., Priadi, C., Moersidik, S., & Ali, F. (2020). Effect of
size variation on microbubble mass transfer coefficient in flotation and
aeration processes. Heliyon, 6(4), e03748. https://doi.org/10.1016/j.heliyon.2020.e03748
Temesgen, T., Bui, T., Han, M., Kim, T.,
& Park, H. (2017). Micro and nanobubble technologies as a new
horizon for water-treatment techniques: A review. Advances in Colloid and
Interface Science, 246, 40–51. https://doi.org/10.1016/j.cis.2017.06.011
The
International Renewable Energy Agency. (2022). Indonesia energy transition
outlook.
Wang, X., Meng, Q., Gao, L., Jin, Z., Ge,
J., Liu, C., & Xing, W. (2018). Recent progress in hydrogen
production from formic acid decomposition. International Journal of Hydrogen
Energy, 43(14), 7055–7071. https://doi.org/10.1016/j.ijhydene.2018.02.146
Whulanza,
Y., Kusrini, E., Budiyanto, M., Arnas, A., & Yanuar, Y. (2024).
Decarbonizing the maritime industry: A collaborative path forward.
International Journal of Technology, 15(6), 1593. https://doi.org/10.14716/ijtech.v15i6.7526
Widiatmoko, P., Hendra Saputera, W.,
Devianto, H., Nurdin, I., Rivana, E., & Angkasa, A. (2021). Effect
of bubble size on electrochemical reduction of carbon dioxide to formic acid.
IOP Conference Series: Materials Science and Engineering, 1143(1), 012001. https://doi.org/10.1088/1757-899X/1143/1/012001
Widiatmoko,
P., Nurdin, I., Devianto, H., Prakarsa, B., & Hudoyo, H. (2020).
Electrochemical reduction of CO? to formic acid on Pb-Sn alloy cathode. IOP
Conference Series: Materials Science and Engineering, 823(1), 012053. https://doi.org/10.1088/1757-899X/823/1/012053
Wu, J., Risalvato, F., & Zhou, X.-D.
(2012). Effects of the electrolyte on electrochemical reduction of CO?
on Sn electrode. ECS Transactions,
41(33), 49–60. https://doi.org/10.1149/1.3702412
Zhao, J., Liu, Y., Li, W., Wen, C., Fu,
H., Yuan, H., Liu, P., & Yang, H. (2023). A focus on the
electrolyte: Realizing CO? electroreduction from aqueous solution to pure
water. Chem Catalysis, 3(1), 100471. https://doi.org/10.1016/j.checat.2022.11.010
Zhong, H., Fujii, K., & Nakano, Y.
(2017). Effect of KHCO? concentration on electrochemical reduction of
CO? on copper electrode. Journal of The Electrochemical Society, 164(9),
F923–F927. https://doi.org/10.1149/2.0601709jes
Zhong, H., Fujii, K., Nakano, Y., &
Jin, F. (2015). Effect of CO? bubbling into aqueous solutions used for
electrochemical reduction of CO? for energy conversion and storage. The Journal
of Physical Chemistry C, 119(1), 55–61. https://doi.org/10.1021/jp509043h