• International Journal of Technology (IJTech)
  • Vol 16, No 6 (2025)

Optimizing Reactor Configuration and Electrode Geometry for Enhanced Electrochemical Reduction of CO2

Optimizing Reactor Configuration and Electrode Geometry for Enhanced Electrochemical Reduction of CO2

Title: Optimizing Reactor Configuration and Electrode Geometry for Enhanced Electrochemical Reduction of CO2
Pramujo Widiatmoko, Hary Devianto, Silmia Nurul Aulia Irawan, Angela Maria Vinka, Ira Febrianty Sukmana, Wibawa Hendra Saputera, Mitra Eviani, Tirto Prakoso

Corresponding email:


Cite this article as:
Widiatmoko, P., Devianto, H., Irawan, S., Vinka, A., Sukmana, I., Saputera, W., Eviani, M., & Prakoso, T. (2025). Optimizing reactor configuration and electrode geometry for enhanced electrochemical reduction of co2. International Journal of Technology, 16 (6), 1956–1968.

14
Downloads
Pramujo Widiatmoko Department of Chemical Engineering, Faculty of Industrial Technology, Bandung Institute of Technology, Ganesha no. 10, Bandung, West Java, 40132, Indonesia
Hary Devianto Department of Chemical Engineering, Faculty of Industrial Technology, Bandung Institute of Technology, Ganesha no. 10, Bandung, West Java, 40132, Indonesia
Silmia Nurul Aulia Irawan Department of Chemical Engineering, Faculty of Industrial Technology, Bandung Institute of Technology, Ganesha no. 10, Bandung, West Java, 40132, Indonesia
Angela Maria Vinka Department of Chemical Engineering, Faculty of Industrial Technology, Bandung Institute of Technology, Ganesha no. 10, Bandung, West Java, 40132, Indonesia
Ira Febrianty Sukmana Department of Chemical Engineering, Faculty of Industrial Technology, Bandung Institute of Technology, Ganesha no. 10, Bandung, West Java, 40132, Indonesia
Wibawa Hendra Saputera Department of Chemical Engineering, Faculty of Industrial Technology, Bandung Institute of Technology, Ganesha no. 10, Bandung, West Java, 40132, Indonesia
Mitra Eviani 1. Department of Chemical Engineering, Faculty of Industrial Technology, Bandung Institute of Technology, Ganesha no. 10, Bandung, West Java, 40132, Indonesia 2. Center for Oil and Gas Testing, Minis
Tirto Prakoso Department of Chemical Engineering, Faculty of Industrial Technology, Bandung Institute of Technology, Ganesha no. 10, Bandung, West Java, 40132, Indonesia
Email to Corresponding Author

Abstract
Optimizing Reactor Configuration and Electrode Geometry for Enhanced Electrochemical Reduction of CO2

The increasing concentration of CO2 in the atmosphere has contributed significantlyto global warming and its associated environmental effects. Electrochemical conversion hasemerged as a promising approach for CO2 capture, storage, and utilization to produce valueaddedchemicals. However, the inherently low solubility of CO2 in aqueous solutions presents amajor challenge to the efficiency of process. Unlike previous studies that focused on increasing CO2 solubility by lowering the temperature or using non-aqueous solvents, this work exploresthe use of smaller gas bubbles to enhance CO2 retention time in solution. The objective is toprolong the residence time of CO2 bubble in the electrolyte, allowing for gradual dissolution,sustained saturation, and improved interaction with the cathode surface. Under the same operatingvoltage, the bubble stone sparger, produces bubbles with diameters of 6.18 and 3.26-timesthan those generated by the atomizer and air stone, respectively, achieved 29.23% and 15.23%higher current efficiency. Similarly, the formic acid yield increased by 50.70% and 28.21%,compared to the other sparger types. The highest current efficiency (11.60%) and formic acidyield (0.122%) were obtained using the bubble stone sparger with a cathode length of 2.5 cm,a cathode-sparger distance of 0.5 cm, and an operating voltage of 6 V. These findings highlightthe potential of using smaller bubble sizes to improve the electrochemical reduction of CO2 byenhancing gas-liquid interaction and mass transfer performance.

CO2ER; Bubble size effect; Enhance performance

References

Anggerta, L. A., Kurniawansyah, F., Tetrisyanda, R., & Wibawa, G. (2025). Catalytic Synthesis of Diethyl Carbonate from Carbon Dioxide using Catalyst KI/EtONa with Propylene Oxide as Dehydration Agent and Process Optimization Based on Box-Behnken Design. International Journal of Technology, 16 1), 243–254. https://doi.org/10.14716/ijtech.v16i1.6417

Angulo, A., van der Linde, P., Gardeniers, H., Modestino, M., & Fernández Rivas, D. (2020). Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule, 4(3), 555–579. https://doi.org/10.1016/j.joule.2020.01.005

Bagemihl, I., Bhatraju, C., van Ommen, J. R., & van Steijn, V. (2022). Electrochemical Reduction of CO2 in Tubular Flow Cells under Gas-Liquid Taylor Flow. ACS Sustainable Chemistry & Engineering, 10(38), 12580–12587. https://doi.org/10.1021/acssuschemeng.2c03038

Bagotzky, V. S. (2006). Fundamentals of electrochemistry (2nd ed.). Wiley-Interscience.

Bang, J.-H., Song, K., Park, S., Jeon, C., Lee, S. W., & Kim, W. (2015). Effects of CO2 Bubble Size, CO2 Flow Rate and Calcium Source on the Size and Specific Surface Area of CaCO3 Particles. Energies, 8(10), 12304–12313. https://doi.org/10.3390/en81012304

Baumgartner, L. M., Kahn, A., Hoogland, M., Bleeker, J., Jager, W. F., & Vermaas, D. A. (2023). Direct Imaging of Local pH Reveals Bubble-Induced Mixing in a CO2 Electrolyzer. ACS Sustainable Chemistry & Engineering, 11(28), 10430–10440. https://doi.org/10.1021/acssuschemeng.3c01773

Bulushev, D. A., & Ross, J. R. H. (2018). Towards Sustainable Production of Formic Acid. ChemSusChem, 11(5), 821–836. https://doi.org/10.1002/cssc.201702075

Chang, B., Pang, H., Raziq, F., Wang, S., Huang, K.-W., Ye, J., & Zhang, H. (2023). Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: Challenges and perspectives. Energy & Environmental Science, 16(11), 4714–4758. https://doi.org/10.1039/D3EE00964E

Choi, S., Jeong, S., Kim, H., Baek, I.-H., & Park, K. (2016). Electrochemical reduction of carbon dioxide to formate on tin–lead alloys. ACS Sustainable Chemistry & Engineering, 4(3), 1311–1318. https://doi.org/10.1021/acssuschemeng.5b01336

Daiyan, R., Lu, X., Ng, Y., & Amal, R. (2017). Liquid hydrocarbon production from CO2: Recent development in metal-based electrocatalysis. ChemSusChem, 10(22), 4342–4358. https://doi.org/10.1002/cssc.201701631  

Duarah, P., Haldar, D., Yadav, V., & Purkait, M. (2021). Progress in the electrochemical reduction of CO2 to formic acid: A review on current trends and future prospects. Journal of Environmental Chemical Engineering, 9(6), 106394. https://doi.org/10.1016/j.jece.2021.106394

Ewis, D., Arsalan, M., Khaled, M., Pant, D., Ba-Abbad, M., Amhamed, A., & El-Naas, M. (2023). Electrochemical reduction of CO2 into formate/formic acid: A review of cell design and operation. Separation and Purification Technology, 316, 123811. https://doi.org/10.1016/j.seppur.2023.123811

 Fan, L., Xia, C., Zhu, P., Lu, Y., & Wang, H. (2020). Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nature Communications, 11(1), 3633. https://doi.org/10.1038/s41467-020-17403-1

Fang, W., Guo, W., Lu, R., Yan, Y., Liu, X., Wu, D., Li, F., Zhou, Y., He, C., Xia, C., Niu, H., Wang, S., Liu, Y., Mao, Y., Zhang, C., You, B., Pang, Y., Duan, L., Yang, X., ... Xia, B. (2024). Durable CO2 conversion in the proton-exchange membrane system. Nature, 626(7997), 86–91. https://doi.org/10.1038/s41586-023-06917-5

Gao, G., Obasanjo, C., Crane, J., & Dinh, C.-T. (2023). Comparative analysis of electrolyzers for electrochemical carbon dioxide conversion. Catalysis Today, 423, 114284. https://doi.org/10.1016/j.cattod.2023.114284

Gao, T., Kumar, A., Shang, Z., Duan, X., Wang, H., Wang, S., Ji, S., Yan, D., Luo, L., Liu, W., & Sun, X. (2019). Promoting electrochemical conversion of CO2 to formate with rich oxygen vacancies in nanoporous tin oxides. Chinese Chemical Letters, 30(12), 2274–2278. https://doi.org/10.1016/j.cclet.2019.07.028

García, H., & Mejia, N. (2021). Mathematical model of a bubble column for the increased growth of Arthrospira platensis and the formation of phycocyanin. International Journal of Technology, 12(2), 232. https://doi.org/10.14716/ijtech.v12i2.4256

Gemello, L., Plais, C., Augier, F., Cloupet, A., & Marchisio, D. (2018). Hydrodynamics and bubble size in bubble columns: Effects of contaminants and spargers. Chemical Engineering Science, 184, 93–102. https://doi.org/10.1016/j.ces.2018.03.040

Hadi, I., Yola, L., Hanifa, A., & Muzhaffar, M. (2025). Decarbonization strategy towards net zero emission for international shipping on international shipping routes in Indonesian archipelago sea lanes. International Journal of Technology, 16(1), 8. https://doi.org/10.14716/ijtech.v16i1.7106

Institute for Essential Services Reform. (2021). Climate transparency report 2021: Real climate change impacts, Indonesia needs to increase its climate action [Accessed 8 August 2024]. https://iesr.or.id/en/climate-transparency-report-2021-real-climate-change-impacts-indonesia-needs-to-increase-its-climate-action/

International Energy Agency. (2024). CO2 emissions in 2023, a new record high, but is there light at the end of the tunnel?

Irabien, A., Alvarez-Guerra, M., Albo, J., & Dominguez-Ramos, A. (2018). Electrochemical conversion of CO2 to value-added products. In Electrochemical water and wastewater treatment (pp. 29–59). Elsevier. https://doi.org/10.1016/B978-0-12-813160-2.00002-X

Jia, S., Ma, X., Sun, X., & Han, B. (2022). Electrochemical transformation of CO2 to value-added chemicals and fuels. CCS Chemistry, 4(10), 3213–3229. https://doi.org/10.31635/ccschem.022.202202094

Kartohardjono, S., Karamah, E., Hayati, A., Talenta, G., Ghazali, T., & Lau, W. (2024). Effect of oxidants in the utilization of polysulfone hollow fiber membrane module as bubble reactor for simultaneously removal of NOx and SO2. International Journal of Technology, 15(1), 63. https://doi.org/10.14716/ijtech.v15i1.6415

Kim, B., Ma, S., Molly Jhong, H.-R., & Kenis, P. (2015). Influence of dilute feed and pH on electrochemical reduction of CO2 to CO on Ag in a continuous flow electrolyzer. Electrochimica Acta, 166, 271–276. https://doi.org/10.1016/j.electacta.2015.03.064

Kumar, B., Llorente, M., Froehlich, J., Dang, T., Sathrum, A., & Kubiak, C. (2012). Photochemical and photoelectrochemical reduction of CO2. Annual Review of Physical Chemistry, 63(1), 541–569. https://doi.org/10.1146/annurev-physchem-032511-143759

Liang, C., Kim, B., Yang, S., Liu, Y., Woellner, C., Li, Z., Vajtai, R., Yang, W., Wu, J., Kenis, P., & Ajayan, P. (2018). High efficiency electrochemical reduction of CO2 beyond the two-electron transfer pathway on grain boundary rich ultra-small SnO2 nanoparticles. Journal of Materials Chemistry A, 6(22), 10313–10319. https://doi.org/10.1039/C8TA01367E

Lin, R., Guo, J., Li, X., Patel, P., & Seifitokaldani, A. (2020). Electrochemical reactors for CO2 conversion. Catalysts, 10(5), 473. https://doi.org/10.3390/catal10050473

Liu, C., & Tang, Y. (2019). Application research of micro and nano bubbles in water pollution control. E3S Web of Conferences, 136, 06028. https://doi.org/10.1051/e3sconf/201913606028

Madani, H., Wibowo, A., Sasongko, D., Miyamoto, M., Uemiya, S., & Budhi, Y. (2024). Novel multiphase CO2 photocatalysis system using N-TiO2/CNCs and CO2 nanobubble. International Journal of Technology, 15(2), 432. https://doi.org/10.14716/ijtech.v15i2.6694

Marcandalli, G., Monteiro, M., Goyal, A., & Koper, M. (2022). Electrolyte effects on CO2 electrochemical reduction to CO. Accounts of Chemical Research, 55(14), 1900–1911. https://doi.org/10.1021/acs.accounts.2c00080

Moret, S., Dyson, P., & Laurenczy, G. (2014). Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media. Nature Communications, 5(1), 4017. https://doi.org/10.1038/ncomms5017

Moshtari, B., Babakhani, E., & Moghaddas, J. (2009). Experimental study of gas hold-up and bubble behaviour in gas-liquid column [No available DOI].

Mudassir, R. (2021). Bauran energi, porsi pembangkit EBT tembus 12,77 persen [Accessed 8 August 2024]. https://ekonomi.bisnis.com/read/20211021/44/1456788/bauran-energi-porsi-pembangkit-ebt-tembus-1277-persen

Popov, K., Djokic, S., & Grgur, B. (2005). Fundamental aspects of electrometallurgy. Kluwer Academic/Plenum Publishers.

Ramadhan, R., Mon, M., Tangparitkul, S., Tansuchat, R., & Agustin, D. (2024). Carbon capture, utilization, and storage in Indonesia: An update on storage capacity, current status, economic viability, and policy. Energy Geoscience, 5(4), 100335. https://doi.org/10.1016/j.engeos.2024.100335

Sacco, A., Zeng, J., Bejtka, K., & Chiodoni, A. (2019). Modeling of gas bubble-induced mass transport in the electrochemical reduction of carbon dioxide on nanostructured electrodes. Journal of Catalysis, 372, 39–48. https://doi.org/10.1016/j.jcat.2019.02.016

Salvini, C., Re Fiorentin, M., Risplendi, F., Raffone, F., & Cicero, G. (2022). Active surface structure of SnO? catalysts for CO? reduction revealed by Ab Initio simulations. The Journal of Physical Chemistry C, 126(34), 14441–14447. https://doi.org/10.1021/acs.jpcc.2c02583

Suwartha, N., Syamzida, D., Priadi, C., Moersidik, S., & Ali, F. (2020). Effect of size variation on microbubble mass transfer coefficient in flotation and aeration processes. Heliyon, 6(4), e03748. https://doi.org/10.1016/j.heliyon.2020.e03748

Temesgen, T., Bui, T., Han, M., Kim, T., & Park, H. (2017). Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review. Advances in Colloid and Interface Science, 246, 40–51. https://doi.org/10.1016/j.cis.2017.06.011

The International Renewable Energy Agency. (2022). Indonesia energy transition outlook.

Wang, X., Meng, Q., Gao, L., Jin, Z., Ge, J., Liu, C., & Xing, W. (2018). Recent progress in hydrogen production from formic acid decomposition. International Journal of Hydrogen Energy, 43(14), 7055–7071. https://doi.org/10.1016/j.ijhydene.2018.02.146

Whulanza, Y., Kusrini, E., Budiyanto, M., Arnas, A., & Yanuar, Y. (2024). Decarbonizing the maritime industry: A collaborative path forward. International Journal of Technology, 15(6), 1593. https://doi.org/10.14716/ijtech.v15i6.7526

Widiatmoko, P., Hendra Saputera, W., Devianto, H., Nurdin, I., Rivana, E., & Angkasa, A. (2021). Effect of bubble size on electrochemical reduction of carbon dioxide to formic acid. IOP Conference Series: Materials Science and Engineering, 1143(1), 012001. https://doi.org/10.1088/1757-899X/1143/1/012001

Widiatmoko, P., Nurdin, I., Devianto, H., Prakarsa, B., & Hudoyo, H. (2020). Electrochemical reduction of CO? to formic acid on Pb-Sn alloy cathode. IOP Conference Series: Materials Science and Engineering, 823(1), 012053. https://doi.org/10.1088/1757-899X/823/1/012053

Wu, J., Risalvato, F., & Zhou, X.-D. (2012). Effects of the electrolyte on electrochemical reduction of CO? on Sn electrode. ECS Transactions, 41(33), 49–60. https://doi.org/10.1149/1.3702412

Zhao, J., Liu, Y., Li, W., Wen, C., Fu, H., Yuan, H., Liu, P., & Yang, H. (2023). A focus on the electrolyte: Realizing CO? electroreduction from aqueous solution to pure water. Chem Catalysis, 3(1), 100471. https://doi.org/10.1016/j.checat.2022.11.010

Zhong, H., Fujii, K., & Nakano, Y. (2017). Effect of KHCO? concentration on electrochemical reduction of CO? on copper electrode. Journal of The Electrochemical Society, 164(9), F923–F927. https://doi.org/10.1149/2.0601709jes

Zhong, H., Fujii, K., Nakano, Y., & Jin, F. (2015). Effect of CO? bubbling into aqueous solutions used for electrochemical reduction of CO? for energy conversion and storage. The Journal of Physical Chemistry C, 119(1), 55–61. https://doi.org/10.1021/jp509043h