• International Journal of Technology (IJTech)
  • Vol 16, No 6 (2025)

Sensitivity Enhancement of Fiber Bragg Grating Based Hydrophone Using an Acoustic Resonator for Underwater Sensing

Sensitivity Enhancement of Fiber Bragg Grating Based Hydrophone Using an Acoustic Resonator for Underwater Sensing

Title: Sensitivity Enhancement of Fiber Bragg Grating Based Hydrophone Using an Acoustic Resonator for Underwater Sensing
Irwan Rawal Husdi, Andi Setiono, Hari Pratomo, Imam Mulyanto, Mohamad Syahadi, Bambang Widiyatmoko, Retno Wigajatri Purnamaningsih

Corresponding email:


Cite this article as:
Husdi, I., Setiono, A., Pratomo, H., Mulyanto, I., Syahadi, M., Widiyatmoko, B., & Purnamaningsih, R. (2025). Sensitivity enhancement of fiber bragg grating-based hydrophone using an acoustic resonator for underwater sensing. International Journal of Technology, 16 (6), 1944–1955.

17
Downloads
Irwan Rawal Husdi 1. Optoelectronics Laboratory, Department of Electrical Engineering, Universitas Indonesia, Depok 16425, West Java, Indonesia 2. Research Center for Photonics, National Research and Innovation Agency
Andi Setiono Research Center for Photonics, National Research and Innovation Agency, South Tangerang 15314, Banten, Indonesia
Hari Pratomo Research Center for Photonics, National Research and Innovation Agency, South Tangerang 15314, Banten, Indonesia
Imam Mulyanto Research Center for Photonics, National Research and Innovation Agency, South Tangerang 15314, Banten, Indonesia
Mohamad Syahadi 1. Research Center for Photonics, National Research and Innovation Agency, South Tangerang 15314, Banten, Indonesia. 2. Optical Sensors and Smart Integrated Systems Research Team, LAAS-CNRS, 31031 T
Bambang Widiyatmoko Research Center for Photonics, National Research and Innovation Agency, South Tangerang 15314, Banten, Indonesia
Retno Wigajatri Purnamaningsih Optoelectronics Laboratory, Department of Electrical Engineering, Universitas Indonesia, Depok 16425, West Java, Indonesia
Email to Corresponding Author

Abstract
Sensitivity Enhancement of Fiber Bragg Grating Based Hydrophone Using an Acoustic Resonator for Underwater Sensing

Fiber optic-based hydrophones have many advantages over the piezoelectric-based hydrophones that are commonly used today. Fiber optic-based hydrophones include using fiber Bragg grating (FBG), which has been successfully demonstrated and continues to be developed. However, so far, the sensitivity of FBG-based hydrophones is still relatively low, at around 91 nm/MPa. In this study, a new method is proposed to increase the sensitivity of FBG-based hydrophones using an acoustic resonator. The experiment was conducted using an acoustic resonator in the form of a quarter-wavelength resonator with a fundamental frequency of 2057 Hz. The results of initial experiments on a laboratory scale show that the acoustic signal detected by the proposed FBG-based hydrophone has the same frequency as the sound wave signal generated by an underwater speaker. However, there is a phase difference between the two signals caused by the delay between the sound wave signal generation and hydrophone detection. Experiments using an acoustic resonator in the frequency range of 100 Hz - 4000 Hz showed an increase in sound pressure amplitude, with a maximum sensitivity enhancement of up to 23 dB when the distance between the FBG and the underwater speaker was 5 cm and the sound frequency was 900 Hz.

Acoustic resonator; Fiber bragg grating; Fiber optic sensor; Hydrophone sensitivity; Underwater acoustic

References

Braulik, G., Wittich, A., Macaulay, J., Kasuga, M., Gordon, J., Davenport, T., & Gille spie, D. (2017). Acoustic monitoring to document the spatial distribution and hotspots of blast fishing in tanzania. Marine Pollution Bulletin, 125(1-2), 360366. . https://doi.org/10.1016/j.marpolbul.2017.09.036

Braulik, G., Wittich, A., Macaulay, J., Gillespie, D., & Davenport, T. (2015). Fishing with explosives in tanzania: Spatial distribution and hotspots. ResearchGate. https://doi.org/10.13140/RG.2.1.1749.2563

Bucaro, J., Dardy, H., & Carome, E. (1977). Fiber-optic hydrophone. The Journal of the Acoustical Society of America, 62(5), 1302–1304. . https://doi.org/10.1121/1.381624

Campopiano, S., Cutolo, A., Cusano, A., Giordano, M., Parente, G., Lanza, G., & Laudati, A. (2009). Underwater acoustic sensors based on fiber bragg gratings. Sensors, 9(6), 4446–4454. https://doi.org/10.3390/s90604446

Catapane, G., Petrone, G., Robin, O., & Verdi`ere, K. (2023). Coiled quarter wavelength resonators for low-frequency sound absorption under plane wave and diffuse acoustic field excitations. Applied Acoustics, 209, 109402. https://doi.org/https://doi.org/10.1016/j.apacoust.2023.109402

Chang, H.-Y., Kuo, C.-Y., Wang, T.-L., Chang, Y.-C., Fu, M.-Y., & Liu, W.-F. (2018). Hydrophone based on a fiber bragg grating. 2018 Progress in Electromagnetics Research Symposium, 233–236. https://doi.org/10.23919/PIERS.2018.8598171

Cole, J., Johnson, R., & Bhuta, P. (1977). Fiber-optic detection of sound. The Journal of the Acoustical Society of America, 62(5), 1136–1138. https://doi.org/10.1121/1.381647

Cui, S., & Khoo, D. (2018). Underwater calibration of hydrophones at very low frequenciesb from 30 hz to 2 khz. Journal of Physics: Conference Series, 1065, 072015. https://doi.org/10.1088/1742-6596/1065/7/072015

Guardato, S., Riccio, R., Janneh, M., Bruno, F., Pisco, M., Cusano, A., & Iannaccone, G. (2023). An innovative fiber-optic hydrophone for seismology: Testing detection capacity for very low-energy earthquakes. Sensors, 23, 3374. https://doi.org/10.3390/s23073374

Hampton-Smith, M., Bower, D., & Mika, S. (2021). A review of the current global status of blast fishing: Causes, implications and solutions. Biological Conservation, 262,
109307. https://doi.org/10.1016/j.biocon.2021.109307

Holt, S. (2008). Distribution of red drum spawning sites identified by a towed hydrophone array. Transactions of The American Fisheries Society- TRANS AMER FISH SOC, 137, 551–561. https://doi.org/10.1577/T03-209.1

Huang, S., Jin, X., Zhang, J., Chen, Y., Wang, Y., Zhou, Z., & Ni, J. (2011). An optical fiber hydrophone using equivalent phase shift fiber bragg grating for underwater acoustic measurement. Photonic Sensors, 1, 289–294. https://doi.org/10.1007/s13320-011-0023-6

Kumar, H., Sharan, A., & Sreerangaraju, M. N. (2021). Underwater acoustic pressure sensing using optical fiber bragg grating. 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom), 584–590.

Li, C., Xiaobin, P., Liu, J., Wang, C., Fan, S., & Cao, S. (2019). D-shaped fiber bragg grating ultrasonic hydrophone with enhanced sensitivity and bandwidth. Journal of Lightwave Technology, PP, 1–1. https://doi.org/10.1109/JLT.2019.2898233

Liu, W.-F., Li, J.-G., Chang, H.-Y., Fu, M.-Y., & Chen, C.-F. (2022). A new type of etched fiber grating hydrophone. Photonics, 9(4). https://doi.org/10.3390/photonics9040255

Madani, N. A., Purnamaningsih, R. W., Poespawati, N. R., Hamidah, M., Rahardjo, S., & Wibowo, D. K. (2023). Detection of low hydrostatic pressure using fiber bragg grating sensor. International Journal of Technology, 14(7), 1527–1536. https://doi.org/10.14716/ijtech.v14i7.6714

Matsumoto, H., Haralabus, G., Zampolli, M., & Ozel, N. M. (2016). T-phase and tsunamipressure waveforms recorded by near-source ims water-column hydrophone triplets during the 2015 chile earthquake. Geophysical Research Letters, 43(24), 12, 511 12, 519. https://doi.org/https://doi.org/10.1002/2016GL071425

Matsumoto, Y., Mizushima, Y., & Sanada, T. (2022). Removing gas from a closed-end small hole by irradiating acoustic waves with two frequencies. Micromachines,
13(1). https://doi.org/10.3390/mi13010109

Meng, Z., Chen, W., Wang, J., Hu, X., Chen, M., & Zhang, Y. (2021). Recent progress in fiber-optic hydrophones. Photonic Sensors, 11, 109–122. https://doi.org/10.1007/s13320-021-0618-5

Moccia, M., Consales, Iadicicco, A., Pisco, M., Cutolo, Galdi, V., & Cusano. (2012). Resonant hydrophones based on coated fiber bragg gratings. JOURNAL OF LIGHT WAVE TECHNOLOGY, 30, 2472–2481. https://doi.org/10.1109/JLT.2012.2200233

Okal, E., Talandier, J., & Reymond, D. (2007). Quantification of hydrophone records of the 2004 sumatra tsunami. Pure and Applied Geophysics, 164(2–3), 309–323. https://doi.org/10.1007/s00024-006-0165-4

Parry, J. (2019). An underwater world of walls: Machine sensing, maritime sovereignty, and the aesthetics of undersea surveillance. Theory & Event, 22(4), 891–910. https://doi.org/10.1353/tae.2019.0058

Pavlidi, D., & Skarsoulis, E. K. (2021). Enhanced pulsed-source localization with 3 hydrophones: Uncertainty estimates. Remote Sensing, 13(9). https://doi.org/10.3390/rs13091817

Prasad, P., Sundarrajan, A., & Nayak, J. (2021). Fiber bragg grating (fbg)-based hydrophone with side-hole packaging for underwater acoustic sensing. ISSS Journal of Micro and Smart Systems, 10. https://doi.org/10.1007/s41683-021-00077-2

Rowell, T., Demer, D., Aburto-Oropeza, O., Cota-Nieto, J., Hyde, J., & Erisman, B. (2017). Estimating fish abundance at spawning aggregations from courtship sound levels open. Scientific Reports, 7. https://doi.org/10.1038/s41598-017-03383-8

Saheban, H., & Kordrostami, Z. (2021). Hydrophones, fundamental features, design considerations, and various structures: A review. Sensors and Actuators A: Physical, 329, 112790. https://doi.org/10.1016/j.sna.2021.112790

Saxena, I., Guzman, N., & Pflanze, S. (2012). Frequency response comparison of two fbg based hydrophones. Proceedings of SPIE- The International Society for Optical Engineering, 8368, 228–. https://doi.org/10.1117/12.923344

Sebastian, S., Prasad, P., Michael, K., Avaaru, S., & Sundarrajan, A. (2022). Validation of packaged clad-etched fiber bragg grating as underwater acoustic sensor. IEEE Sensors Journal, PP, 1–1. https://doi.org/10.1109/JSEN.2022.3227461

Showen, R., Dunson, C., Woodman, G., Christopher, S., Lim, T., & Wilson, S. (2018). Locating fish bomb blasts in real-time using a networked acoustic system. Marine International Journal of Technology 16(6) 1-12 (2025) 12 Pollution Bulletin, 128, 496–507. https://doi.org/https://doi.org/10.1016/j.marpolbul.2018.01.029 

Suedel, B., McQueen, A., Wilkens, J., & Fields, M. (2019). Evaluating effects of dredging induced underwater sound on aquatic species: A literature review. Environmental Review. https://doi.org/10.21079/11681/34245

Takahashi, N., Hirose, A., & Takahashi, S. (1997). Underwater acoustic sensor with fiber bragg grating. Optical Review, 4(6), 691–694. https://doi.org/10.1007/s10043-997-0691-z

Takahashi, N., Yoshimura, K., Takahashi, S., & Imamura, K. (2000). Development of an optical fiber hydrophone with fiber bragg grating. Ultrasonics, 38, 581–585. https://doi.org/10.1016/S0041-624X(00)00070-4

 Visbeck, M. (2018). Ocean science research is key for a sustainable future. Nature Communications, 9. https://doi.org/10.1038/s41467-018-03158-3

 Wang, K., Shi, Q., Tian, C., Duan, F., Zhang, M., & Liao, Y. (2011). The design of integrated demodulation system of optical fiber hydrophone array for oceanic oil exploration. In B. Culshaw, Y. Liao, A. Wang, X. Bao, & X. Fan (Eds.), 2011 international conference on optical instruments and technology: Optical sensors and applications (81990R, Vol. 8199). SPIE. https://doi.org/10.1117/12.904035

 Wang, X., Guo, Y., Xiong, L., & Wu, H. (2018). High frequency optical fiber bragg grating accelerometer. IEEE Sensors Journal, PP, 1–1. https://doi.org/10.1109/JSEN.2018.2833885

 Xiao, X., Liu, L., Ziyue, X., Yu, H., Li, W., Wang, Q., Zhao, C., Huang, Y., & Xu, M. (2023). Research on an optimized quarter-wavelength resonator-based triboelectric nanogenerator for efficient low-frequency acoustic energy harvesting. Nanomaterials, 13, 1676. https://doi.org/10.3390/nano13101676

 Xiong, J., Zhang, W., Song, Y., Wen, K., Zhou, Y., Chen, G., & Zhu, L. (2023). Spectral splitting sensing using optical fiber bragg grating for spacecraft lateral stress health monitoring. Applied Sciences, 13, 4161. https://doi.org/10.3390/app13074161

 Zhao, J., Zhang, L., Zheng, L.-n., & Li, N. (2017). The design and research of intelligent search and rescue device based on sonar detection and marine battery. International Conference on Communications, Network and Embedded Systems (ICCNEA), 383–387. https://doi.org/10.1109/ICCNEA.2017.7