• International Journal of Technology (IJTech)
  • Vol 16, No 6 (2025)

Functional Modeling of Distributions of Substantive-Content Message Properties in the Information Background

Functional Modeling of Distributions of Substantive-Content Message Properties in the Information Background

Title:

Functional Modeling of Distributions of Substantive-Content Message Properties in the Information Background

Evgenii Konnikov, Dmitriy Rodionov, Darya Kryzhko

Corresponding email:


Cite this article as:

Konnikov, E., Rodionov, D., & Kryzhko, D. (2025). Functional modeling of distributions of substantive- content message properties in the information background. International Journal of Technology, 16 (6), 1911–1928.



10
Downloads
Evgenii Konnikov Peter the Great St. Petersburg Polytechnic University, 29 Politechnicheskaya Ulitsa, St. Petersburg, 195251 Russia
Dmitriy Rodionov Peter the Great St. Petersburg Polytechnic University, 29 Politechnicheskaya Ulitsa, St. Petersburg, 195251 Russia
Darya Kryzhko Peter the Great St. Petersburg Polytechnic University, 29 Politechnicheskaya Ulitsa, St. Petersburg, 195251 Russia
Email to Corresponding Author

Abstract
<p>Functional Modeling of Distributions of Substantive-Content Message Properties in the Information Background</p>

This paper presents a novel methodology for modeling the distribution of substantive-content message properties in the information background. This study develops a toolkit to analyze and predict information dynamics by identifying key themes, evaluating their importance, and understanding their connections. The proposed approach is based on the concept of multimodality, where properties are characterized by peaks of varying intensity and frequency. Intensity and frequency components are modeled separately and combined into a unified probabilistic framework; model parameters (shape and internal-covariance coefficients) are searched within the range (0,1). The genetic search uses mutation of ±20% with probability 50% and normalization of the intensity scale ( = 1). Model quality is assessed by the Mean Absolute Error between ranked histogram bins (discretization coefficient DC defines the number of bins). Intensity, reflecting the depth and saturation of the information signal, is modeled using the Gamma distribution, while frequency, reflecting the number of occurrences, is represented by the multivariate normal distribution. A genetic algorithm is employed to identify the optimal parameters for these distributions. The methodology offers a more comprehensive understanding of information dynamics by considering both intensity and frequency, and effectively handles complex interdependencies between properties. It can be applied to various domains, including social media analysis, political communication, and marketing, providing valuable insights for decision-making.

Information Background Analysis, Intensity of Presence, Substantive-Content Message, Symbolic Data Constructs, Thematic Analysis

Supplementary Material
FilenameDescription
R1-EECE-7411-20250603145413.pdf ---
References

Amur, Z., Hooi, Y., Bhanbhro, H., Dahri, K., & Soomro, G. (2023). Short-text semantic similarity (STSS): Techniques, challenges and future perspectives. Applied Sciences, 13(6), 3911. https://doi.org/10.3390/app13063911

Anisiforov, A., Dubgorn, A., & Lepekhin, A. (2017). Organization of enterprise architecture information monitoring [Conference proceeding: E3S Web of Conferences, Vol. 110, 02051 (2019)]. Proceedings of the 29th International Business Information Management Association Conference, 2920–2930. https://doi.org/10.1051/e3sconf/201911002051

Bashir, H., Ojiako, U., Marshall, A., Chipulu, M., & Yousif, A. (2022). The analysis of information flow interdependencies within projects. Production Planning & Control, 33(1), 20–36. https://doi.org/10.1080/09537287.2020.1821115

Berawi, M., Sari, M., Salsabila, A., Susantono, B., & Woodhead, R. (2022). Utilizing building information modelling in the tax assessment process of apartment buildings. International Journal of Technology, 13(7), 1515–1526. https://doi.org/10.14716/ijtech.v13i7.6188

Beth, E. (2012). Formal methods: An introduction to symbolic logic and to the study of effective operations in arithmetic and logic. Springer Science & Business Media.

Bharadwaj, A. (2000). A resource-based perspective on information technology capability and firm performance: An empirical investigation. MIS Quarterly, 24(1), 169–196. https://doi.org/10.2307/3250983

Biggers, F., Mohanty, S., & Manda, P. (2023). A deep semantic matching approach for identifying relevant messages for social media analysis. Scientific Reports, 13(1), 12005. https://doi.org/10.1038/s41598-023-38761-y

Boerman, S., Kruikemeier, S., & Bol, N. (2021). When is personalized advertising crossing personal boundaries? How type of information, data sharing, and personalized pricing influence consumer perceptions of personalized advertising. Computers in Human Behavior Reports, 4, 100144. https://doi.org/10.1016/j.chbr.2021.100144

Bruce, N., Murthi, B., & Rao, R. (2017). A dynamic model for digital advertising: The effects of creative format, message content, and targeting on engagement. Journal of Marketing Research, 54(2), 202–218. https://doi.org/10.1509/jmr.14.0117

Cappella, J., & Li, Y. (2023). Principles of effective message design: A review and model of content and format features. Asian Communication Research, 20(3), 147–174. https://doi.org/10.20879/acr.2023.20.023

Cawsey, T., & Rowley, J. (2016). Social media brand building strategies in B2B companies. Marketing Intelligence & Planning, 34(6), 754–776. https://doi.org/10.1108/MIP-04-2015-0079 

Clark, D., Hunt, S., & Malacaria, P. (2007). A static analysis for quantifying information flow in a simple imperative language. Journal of Computer Security, 15(3), 321–371. https://doi.org/10.3233/JCS-2007-15302

Constantiou, I., & Kallinikos, J. (2015). New games, new rules: Big data and the changing context of strategy. Journal of Information Technology, 30(1), 44–57. https://doi.org/10.1057/jit.2014.17 

Copeland, B., & Fan, Z. (2023). Turing and von Neumann: From logic to the computer. Philosophies, 8(2), 22. https://doi.org/10.3390/philosophies8020022

Damanpour, F. (2018). Organizational innovation: A meta-analysis of effects of determinants and moderators. Organizational Innovation, 34(3), 127–162. https://doi.org/10.5465/256406

Dehaene, S., & Cohen, L. (2011). The unique role of the visual word form area in reading. Trends in Cognitive Sciences, 15(6), 254–262. https://doi.org/10.1016/j.tics.2011.04.003

Eremina, I., Yudin, A., Tarabukina, T., & Oblizov, A. (2022). The use of digital technologies to improve the information support of agricultural enterprises. International Journal of Technology, 13(7), 1393–1402. https://doi.org/10.14716/ijtech.v13i7.6184

Goldberg, Y. (2022). Neural network methods for natural language processing. Springer. https://doi.org/10.1007/978-3-031-02165-7

Hitt, M., Hoskisson, R., & Ireland, R. (2019). Strategic management: Concepts and cases: Competitiveness and globalization. Cengage Learning.

Hsieh, Y.-C., & Chen, K.-H. (2011). How different information types affect viewer’s attention on internet advertising. Computers in Human Behavior, 27(2), 935–945. https://doi.org/10.1016/j.chb.2010.11.019 

Kushwaha, A., Kar, A., & Dwivedi, Y. (2021). Applications of big data in emerging management disciplines: A literature review using text mining. International Journal of Information Management Data Insights, 1(2), 100017. https://doi.org/10.1016/j.jjimei.2021.100017

Li, P., Jinyi, L., Xiangyi, L., Yao, X., & Ziguo, W. (2024). Digitalization as a factor of production in China and the impact on total factor productivity (TFP). Systems, 12(5), 164. https://doi.org/10.3390/systems12050164

Li, Y., Chang, Y., & Liang, Z. (2022). Attracting more meaningful interactions: The impact of question and product types on comments on social media advertisings. Journal of Business Research, 150, 89–101. https://doi.org/10.1016/j.jbusres.2022.05.085

Li, Z., Wenquan, W., & Qingguo, M. (2023). The adjustment of pressure perception in e-government response: A perspective of the political system theory. Systems, 11(3), 158. https://doi.org/10.3390/systems11030158

Lim, S., & Schmälzle, R. (2023). Artificial intelligence for health message generation: An empirical study using a large language model (LLM) and prompt engineering. Frontiers in Communication, 8, 1129082. https://doi.org/10.3389/fcomm.2023.1129082

Lytras, M., Visvizi, A., Zhang, X., & Aljohani, N. (2020). Cognitive computing, big data analytics and data-driven industrial marketing. Industrial Marketing Management, 90, 663–666. https://doi.org/10.1016/j.indmarman.2020.03.024

Mueller, M., & Grindal, K. (2019). Data flows and the digital economy: Information as a mobile factor of production. Digital Policy, Regulation and Governance, 21(1), 71–87. https://doi.org/10.1108/DPRG-08-2018-0044

Nadkarni, P., Ohno-Machado, L., & Chapman, W. (2011). Natural language processing: An introduction. Journal of the American Medical Informatics Association, 18(5), 544–551. https://doi.org/10.1136/amiajnl-2011-000464

Nishiyama, A., Shigenori, T., Jack, A. T., & Roumiana, T. (2024). Holographic brain theory: Super-radiance, memory capacity and control theory. International Journal of Molecular Sciences, 25(4), 2399. https://doi.org/10.3390/ijms25042399

Nugraha, E., Sari, R., Sutarman, Y., Yunan, A., & Kurniawan, A. (2022). The effect of information technology, competence, and commitment to service quality and implication on customer satisfaction. International Journal of Technology, 13(4), 827–836. https://doi.org/10.14716/ijtech.v13i4.3809

Oberg, C. (2023). Neuroscience in business-to-business marketing research: A literature review, co-citation analysis and research agenda. Industrial Marketing Management, 113, 168–179. https://doi.org/10.1016/j.indmarman.2023.06.004

Omar, Y., & Peter, P. (2020). A survey of information entropy metrics for complex networks. Entropy, 22(12), 1417. https://doi.org/10.3390/e22121417

Onykiy, B., Antonov, E., Artamonov, A., & Tretyakov, E. (2020). Information analysis support for decision-making in scientific and technological development. International Journal of Technology, 11(6), 1125–1135. https://doi.org/10.14716/ijtech.v11i6.4465

Qiu, Q., Hao, Z., & Jiang, L. (2022). Strategic information flow under the influence of industry structure. European Journal of Operational Research, 298(3), 1175–1191. https://doi.org/10.1016/j.ejor.2021.08.041 

Rodionov, D., Gracheva, A., Konnikov, E., Konnikova, O., & Kryzhko, D. (2022). Analyzing the systemic impact of information technology development dynamics on labor market transformation. International Journal of Technology, 13(7), 1548–1557. https://doi.org/10.14716/ijtech.v13i7.6204 

Rodionov, D., Kryzhko, D., Tenishev, T., Uimanov, V., Abdulmanova, A., Kvikviniia, A., & Konnikov, E. (2022). Methodology for assessing the digital image of an enterprise with its industry specifics. Algorithms, 15(6), 177. https://doi.org/10.3390/a15060177

Rodionov, D., Zaytsev, A., Konnikov, E., Dmitriev, N., & Dubolazova, Y. (2021). Modeling changes in the enterprise information capital in the digital economy. Journal of Open Innovation: Technology, Market, and Complexity, 7(3), 166. https://doi.org/10.3390/joitmc7030166 

Smýkal, P., & Eric, W. (2023). A commemorative issue in honor of 200th anniversary of the birth of Gregor Johann Mendel: The genius of genetics. International Journal of Molecular Sciences, 24(14), 11718. https://doi.org/10.3390/ijms241411718

Stapleton, G., Howse, J., & Rodgers, P. (2010). A graph theoretic approach to general Euler diagram drawing. Theoretical Computer Science, 411(1), 91–112. https://doi.org/10.1016/j.tcs.2009.09.005 

Vigo, R. (2013). Complexity over uncertainty in generalized representational information theory (GRIT): A structure-sensitive general theory of information. Information, 4(1), 1–30. https://doi.org/10.3390/info4010001

Wang, S., Zhang, Y., Shi, W., Zhang, G., Zhang, J., Lin, N., & Zong, C. (2023). A large dataset of semantic ratings and its computational extension. Scientific Data, 10(1), 106. https://doi.org/10.1038/s41597-023-01995-6

Weaver, W. (2017). The mathematics of communication. In Communication theory (pp. 27–38). Routledge.

Weinlich, P., & Semerádová, T. (2022). Emotional, cognitive and conative response to influencer marketing. New Techno Humanities, 2(1), 59–69. https://doi.org/10.1016/j.techum.2022.07.004 

Zaytsev, A., Rodionov, D., Dmitriev, N., & Kichigin, O. (2019). Comparative analysis of results on application of methods of intellectual capital valuation. In International Scientific Conference: Digital Transformation on Manufacturing, Infrastructure and Service (DTMIS 2019).