Published at : 20 Dec 2021
Volume : IJtech
Vol 12, No 6 (2021)
DOI : https://doi.org/10.14716/ijtech.v12i6.5187
Yusnita Rahayu | Department of Electrical Engineering, Faculty of Engineering, Universitas Riau, Pekanbaru, Riau 28292, Indonesia |
Rosdiansyah Rosdiansyah | Department of Electrical Engineering, Faculty of Engineering, Universitas Riau, Pekanbaru, Riau 28292, Indonesia |
M.F. Hilmi | Department of Electrical Engineering, Faculty of Engineering, Universitas Riau, Pekanbaru, Riau 28292, Indonesia |
T. Odih | Faculty of Medical, Universitas Riau, Pekanbaru, Riau 28292, Indonesia |
There
is a considerable year by year increase in the number of women suffering from
breast cancer. Early diagnosis is important to ensure the survival of patients.
This study presents the development of a novel, wearable and flexible multiple
input multiple output (MIMO) 2×4 antenna design, which operates at a frequency
of 5.5–7 GHz for time-domain breast tumor detection. The antennas are all
located in the cup of a bra, which is divided into four quadrants; each
quadrant has two antennas for tumor detection. The parameters S11 and S21 for
each antenna were measured in the frequency domain. The measured results of S11
and S21 indicate that the antennas worked well both with and without a breast
phantom model at the assigned frequency. For antenna five, located in the third
quadrant (the quadrant with the tumors), the signal response of the antenna on
the breast phantom model had a higher amplitude than that without the breast
phantom model. The results demonstrate that the antennas worked well for the
detection of the tumors.
Breast cancer; MIMO, Tumor detection; Wearable antenna
Breast cancer is a major cause of an increased death rate among women. Early detection through regular screening improves the chance of recovery from breast cancer (Beura et al., 2015). Digital mammograms are used to detect breast cancer by classifying the mammogram as either normal or abnormal, using the k-Nearest Neighbor (kNN) method (Nusantara et al., 2016). The use of microwave techniques for breast tumor detection has been extensively researched in recent years. Unlike standard X-ray mammography, these techniques offer breast scans that do not use ionizing radiation, do not require breast compression, and can be implemented at a lower cost (Kim et al., 2008; O’Halloran et al., 2010; Alsharif and Kurnaz, 2018). One of the most important components in the microwave techniques used for breast tumor detection is the ultra-wideband (UWB) antenna. The main principle in UWB imaging is to utilize the existing contrast in the dielectric properties of di?erent breast tissues (AlShehri et al., 2011). One of the image reconstruction techniques used to detect tumors is the development of sparse and low-rank compressive sensing (Sholeh et al., 2020).
Electromagnetic radiation emitted to the human body must comply with the rules set by the international commission on non-ionizing radiation protection (ICNIRP). For the general public, the specific absorption rate [W/kg] (SAR), in the frequency range from10 GHz, has a limit value of 2 W/kg (Kumagai et al., 2011). With UWB technology that uses low input power, it is possible to produce SAR values that meet the predetermined standards.
Research conducted by Bahramiabarghouei et al. (2015) designed a flexible 4´4 microstrip array antenna,
using a coplanar waveguide feeder, to detect breast tumors. The antenna was
designed to operate at a frequency of 2–4 GHz. In this study, the substrate
used was Kapton Polyimide with ?r = 3.5 and a thickness of 0.05 mm,
with an antenna size of 20 mm ´ 20 mm. This antenna has a wide bandwidth (Ultra Wideband) (Bahramiabarghouei et al., 2015). In a study conducted by Afyf et al. (2015), a flexible microstrip antenna
was designed, using a coplanar waveguide feeder, for breast cancer application
at a frequency of 2–4 GHz. The substrate used was film. This antenna was very
thin (0.125 mm) and of small size at 15 mm ´ 20 mm. In this study, the
antenna worked in the frequency range of 2–4 GHz with a VSWR of 1.069. The
measured bandwidth of 550 MHz was around 3 GHz, and the total gain was about 1
dB. The radiation pattern produced by the antenna was directional (Afyf et al., 2015).
Research conducted by Alsharif and Kurnaz (2018) created a new design for a wearable
ultra-wideband (UWB) microstrip patch antenna for use in breast cancer
detection. The operating frequency of their proposed antenna ranges from 1.6
GHz to 11.2 GHz. The antenna consists of a rectangular radiating patch that is
fed by a rectangular feed line. This antenna is designed to be part of a
wearable device for women, used to detect breast cancer early. To support its
wearable properties, 100% cotton is used as a substrate with a dielectric
constant of 1.6, while the transmission and ground component patches consist of
copper as a conductive material (Alsharif and Kurnaz, 2018).
In this article, two previous studies were chosen as our references. In the first study (Porter et al., 2013), a time-domain radar was used as the basis for a breast cancer screening system. The system contained a 16-element multistatic array that operated in the 2–4 GHz range. In the second study (Mukherjee et al., 2019), a novel, experimental time-reversal imaging (TRI) system, based on a passive time reverse mirror (TRM), for breast tumor detection was presented. A significant contribution of the current study was the development of eight antennas that are distributed into four quadrants. Each quadrant has two antennas covering the area of the breast. The chosen antenna positions are based on the most frequently occurring tumors in the breast area. An algorithm was developed that was capable of extracting tumors from total fields in a bistatic radar setup. The antenna geometry is a unique model that is also our novel contribution.
The current study presents the development of a novel wearable and flexible MIMO 2 × 4 antenna design for time-domain breast tumor detection. This article describes the methodology used to detect a tumor in the breast phantom. All antennas were located in the cup of a bra, which was divided into four quadrants; each quadrant had two antennas for tumor detection. The study analyzed the measurement results from the antennas in both frequency and time domains. The antennas were measured using a vector network analyzer (VNA). The S21 represents the power transferred from Port 1 to Port 2 (VNA) and the S11 is the reflected power. The S11 and S21 were measured for each antenna, both with and without a breast phantom.
This study introduces a novel wearable and flexible MIMO 2×4 antenna design operating at a frequency of 5.5–7 GHz for time-domain breast tumor detection. The parameters S11 and S21 for each antenna, with and without the breast phantom, were measured. The results show that the measurements of S11 and S21 in the frequencies domain were similar. However, in some frequencies, shifts did occur between the measurements of S11 with or without the breast phantom, but these were not significant.
The signal response from the antenna measurements in the quadrant with the breast tumor had a higher amplitude than those measured without a breast tumor. These results indicate that the antennas will work well for tumor detection. In future work, the size and depth of the tumor detected should be explored and evaluated.
This work was financially supported by the
Indonesia Ministry of Research, Technology, and Higher Education under the
INSINAS Program. The
authors would like to thank the Indonesian Science Institute (LIPI) for the use
of their measurement facility, and the Research and Community Service Agency
(LPPM) Universitas Riau for their motivation and management of the research.
Alsharif, F., Kurnaz, C., 2018. Wearable Microstrip Patch
Ultra Wide Band Antenna for Breast Cancer Detection. In: The 41st
International Conference on Telecommunications and Signal Processing, TSP 2018
Afyf, A., Bellarbi, L., Errachid, A., Sennouni,
M.A., 2015. Flexible Microstrip CPW Slotted Antenna for Breast Cancer Detection.
In: The 2015 International Conference on Electrical and Information
Technologies (ICEIT), pp. 292–295
AlShehri, S.A., Khatun, S., Jantan,
A.B., Abdullah, R.S.A.R., Mahmud, R., Awang, Z., 2011. Experimental Breast
Tumor Detection using NN-based UWB Imaging. Progress
In Electromagnetics Research, Volume 111, pp. 447–465
Beura, S., Majhi, B., Dash, R., Roy,
S., 2015. Classification of Mammograms using Two-Dimensional Discrete
Orthonormal S-Transform for Breast Cancer Detection. Healthcare Technology
Letters, Volume 2(2), pp. 46–51
Bahramiabarghouei, H., Porter, E., Santorelli,
A., Gosselin, B., Popovi?, M., Rusch, L.A. 2015. Flexible 16 Antenna
Array for Microwave Breast Cancer Detection. IEEE Transactions on
Biomedical Engineering, Volume 62(10), pp. 2516–2525
Dummin, L.J., Cox, M., Plant, L., 2007.
Prediction of Breast Tumor Size by Mammography and Sonography—A Breast Screen
Experience. Breast, Volume 16(1), pp. 38–46
Fortaleza, L., Kranold, L., Popovi?, M., 2020.
Flexible 16-Antenna System for Microwave Breast Screening: NB vs. UWB
Performance. IEEE International Symposium on Antennas and Propagation and
North American Radio Science Meeting, pp. 1289–1290
Kendall, W., Kranold, L., Hahn, C., Studebaker,
S., Schwartz, J., Popovi?, M., 2020. A Flexible Antenna Array with Integrated
Switching Matrix for Breast Cancer Detection. In: The 42nd
Annual International Conference of the IEEE Engineering in Medicine &
Biology Society (EMBC), pp. 4369–4372
Kim, H., Claffy, K.C., Fomenkov, M.,
Barman, D., Faloutsos, M., Lee, K.Y., 2008. Internet Traffic Classification
Demystified: Myths, Caveats, and the Best Practices. In: Proceedings
of 2008 ACM CoNEXT Conference-4th International Conference on
Emerging Networking Experiments and Technologies, CoNEXT ’08, January
Kumagai, T., Saito, K., Takahashi, M., Ito, K.,
2011. A Small 915MHz Receiving Antenna for Wireless Power Transmission Aimed at
Medical Applications. International Journal of Technology, Volume 2(1), pp.
20–27
Mukherjee, S., Udpa, L., Udpa, S., Rothwell, E.J., Deng, Y.,
2019. A Time Reversal-Based Microwave Imaging System for
Detection of Breast Tumors. IEEE Transactions on Microwave Theory and
Techniques, Volume 67(5), pp. 2062–2075
Nusantara, A.C., Purwanti, E., Soelistiono, S.,
2016. Classification of Digital Mammograms based on Nearest-Neighbor Method for
Breast Cancer Detection. International Journal of Technology, Volume 7(1),
pp. 71–77
O’Halloran, M., Glavin, M., Jones, E.,
2010. Rotating Antenna Microwave Imaging System for Breast Cancer Detection. Progress
in Electromagnetics Research, Volume 107, pp. 203–217
Porter, E., Kirshin, E., Santorelli,
A., Coates, M., Popoví, M., 2013a. Time-domain Multistatic Radar System for Microwave
Breast Screening. IEEE Antennas and Wireless Propagation Letters, Volume
12, pp. 229–232
Porter, E., Kirshin, E., Santorelli, A.,
Popovic, M., 2013b. Microwave Breast Screening in the Time-Domain:
Identification and Compensation of Measurement-Induced Uncertainties. Progress
In Electromagnetics Research B, Volume 55, pp. 115–130
Rashid, M.M.U., Rahman, A., Paul, L.C., Rafa,
J., Podder, B., Sarkar, A.K., 2019. Breast Cancer Detection & Tumor
Localization using Four Flexible Microstrip Patch Antennas. International
Conference on Computer, Communication, Chemical, Materials and Electronic
Engineering (IC4ME2), pp. 1–6
Santorelli,
A., Chudzik, M., Kirshin, E., Porter, E., Lujambio, A., Arnedo, I., Popovic, M.,
Schwartz, J.D., 2013. Experimental Demonstration of Pulse Shaping for
Time-Domain Microwave Breast Imaging. Progress
in Electromagnetics Research, Volume 133, pp. 309–329
Sholeh, H.R., Rizkinia, M., Basari, B., 2020.
Design of Microwave-based Brain Tumor Detection Framework with the Development
of Sparse and Low-Rank Compressive Sensing Image Reconstruction. International
Journal of Technology, Volume 11(5), pp. 984–994
Xia, X., Li, X., Qin-Wei, L., 2013. A Double
Constrained Robust Capon Beamforming Based Imaging Method for Early Breast
Cancer Detection. Chinese Physics B, Volume 22(9), https://doi.org/10.1088/1674-1056/22/9/094101