Published at : 20 Dec 2021
Volume : IJtech
Vol 12, No 6 (2021)
DOI : https://doi.org/10.14716/ijtech.v12i6.5180
Aziz Abdul | Tokyo Metropolitan University, Hino Campus, 6-6-Asahigaoka, Hinoshi, Tokyo 191-0065, Japan |
Ming Yang | Tokyo Metropolitan University, Hino Campus, 6-6-Asahigaoka, Hinoshi, Tokyo 191-0065, Japan |
Tetsuhide Shimizu | Tokyo Metropolitan University, Hino Campus, 6-6-Asahigaoka, Hinoshi, Tokyo 191-0065, Japan |
Tsuyoshi Furushima | Institute of Industrial Science, The University of Tokyo, 4-6-1, Meguro City, Tokyo 153-8505, Japan |
Stainless
steel thin foils have unlimited applications in the field of microforming
industries, making them attractive for use in industrial society. The problem
hindering their use is the different mechanical properties that exist between
thick and ultra-thin metals with the same plastic deformation characteristics.
In this study, we compared the martensitic phase transformation (MPT) effect in
SUS 304 and SUS 316, which was clarified in samples of the same grain size
(Dg). The correlation between the MPT, grain misorientation (GM), and surface
roughening behavior of SUS 304 and 316 thin metal foils was investigated using
a uniaxial tensile test, which was repeated five times, with constant strain
increments of 1.5%. Phase transformations such as MPT and GM were investigated
using scanning electron microscopy/electron backscattered diffraction
(SEM-EBSD). The results show that surface roughening increased proportionally
in both the SUS 304 and SUS 316 thin foils with a coarse grain size (Dg of 9.0
µm). Surface roughening increased to a greater extent in the coarse-grained SUS
304 and 316 thin metal foils compared with the fine-grained (Dg 1.5 µm)
samples. The SEM-EBSD results show that the grain strength of the
coarse-grained SUS 316 thin metal foil was less inhomogeneous than that of the
coarse-grained SUS 304 thin metal foil. The surface roughness ratio of the
coarse-grained SUS 304 was higher than that of the coarse-grained SUS 316. The
inhomogeneous grain strength of the fine-grained SUS 304 was similar to that of
the fine-grained SUS 316. The surface roughness ratio of the fine-grained SUS
304 was similar to that of the fine-grained SUS 316. The MPT demonstrated a
huge effect on the surface roughening behavior of the SUS 304 and SUS 316
samples with different Dg.
Grain Size (Dg); Grain Misorientation (GM); Martensitic Phase Transformation (MPT)
Austenitic stainless steel foils have a wide range of applications in many industries, such as the electric power, electronics, biomedicals, nuclear, and food. Because of the high demand for microparts, austenitic stainless steel foils have received a great deal of attention (Aziz and Yang, 2020). The uniaxial tensile test induces a martensitic phase transformation (MPT) in stainless steel. The martensite phase volume fraction (Mf) increases proportionally after plastic deformation is applied to austenitic stainless steel foils (Engel and Eckstein, 2002; Xue et al., 2010). The effects of MPT on stainless steel include an increase in strength and a decrease in toughness (Milad et al., 2008; Jha et al., 2008). In previous studies, the Mf occurred in a strip of stainless steel after plastic deformation (Xue et al., 2010; Qin and Xia, 2020; Suryadi et al., 2020). MPT nucleation originates from the shear band intersection in stainless steel after plastic deformation (Tomita and Iwamoto,1995). Until recently, investigations focusing on surface roughness behavior in thin metal foils with an FCC structure have been rare, highlighting the need for further study in this area (Fauzun et al., 2011; Zhang et al., 2017; Dewi et al., 2020). The most important factor affecting formability in thin or sheet metal is surface roughening and not voids (Cheng et al., 2017). Surface roughness depends on the grain size (Dg), and an increase in the Dg leads to a decrease in the ratio of thickness to Dg; thus, there is a need to investigate the surface roughness behavior of thin metal foils with a Dg of less than 10 µm (Yoshida, 2014). The deformation of different individual grains affects the surface roughening behavior of sheet metal (Ichiro et al., 2001; Citrawati et al., 2020). In a weak grain, deformation affects the surface roughening behavior of thin metal foils and sheet metal (Furushima et al., 2013). Without annealing, coarse grain (Dg = 9.0 µm) deformation causes a proportional increase in surface roughness during uniaxial tests, whereas in fine grain (Dg 3.0 and 1.5 µm) deformation, the surface roughness increase is not proportional. The MPT has been shown to affect the surface roughening behavior of coarse-grained SUS 304 (Aziz and Yang, 2020). The ductility of SUS 304 and SUS 316 could be enhanced via annealing treatment (Shuro et al., 2010).
Based on the findings above, the effect of MPT on the surface roughening behavior of SUS 304 and SUS 316 thin metal foils with different and lower grain sizes still needs to be clarified. Until recently, a limited amount of research has investigated the effect of MPT and grain misorientation (GM) on surface roughening behavior and its associated mechanism.
The objectives of this research were to investigate the effects of MPT and GM on the surface roughening behavior of SUS 304 and SUS 316 thin foils with different grain sizes (Dg) of 1.5 µm and 9.0 µm. To achieve these objectives, thin metal foils were subjected to a uniaxial tensile test. The uniaxial tensile test was carried out five times, and the surface roughness behavior was measured at every step. After performing the uniaxial tensile test five times, SEM-EBSD was used to analyze the phase mapping and the GM behavior.
This research investigated the effect of the MPT and
GM on the surface roughening behavior of SUS 304 and SUS 316 with the same
grain size (Dg) after annealing treatment. The following conclusions can be
drawn from the five-stage tensile tests and the SEM-EBSD investigation:
The
effect of the MPT on the Ra was greater than that of the GM in the
coarse-grained samples. However, the increase in the Ra was greater for the
coarse-grained SUS 304 than it was for the fine-grained SUS 304 because the
slip band intersection was lower in the coarse-grained sample than it was in
the fine-grained specimen, resulting in a lower MPT in the coarse-grained
material.
The
inhomogeneous grain strength of the coarse-grained SUS 304 was higher than that
of the whole material. The Ra of the coarse-grained SUS 304 was higher than
that of both the coarse- and fine-grained SUS 316 thin foil.
The grain strength of the coarse-grained SUS 316 was more inhomogeneous than that of the fine-grained SUS 316, resulting in a greater increase in the Ra in the coarse-grained sample. The inhomogeneity of the higher grain strength of the coarse-grained SUS 316 thin foil was affected by its lower GM compared with the fine-grained SUS 316.
The fine-grained SUS 304 and SUS 316 had similar Ra behaviors because of their similar grain strength homogeneity.
The
authors would like to express their sincere gratitude and thanks to
Komatsuseiki Kosakusho Co. Ltd., especially Tomoaki Yoshino San and Yohei
Suzuki San, for providing the samples. The authors are also grateful to
Assistant Professor Oshima; Sota, Tokyo Metropolitan University, for lending
the Shimadzu Tensile Machine to them.
Filename | Description |
---|---|
R2-MME-5180-20211201192604.jpg | The surface roughness in SUS 304 increase higher than SUS 316, because of MPT occur in SUS 304, but MPT not occur in SUS 316 |
Aziz, A., Yang, M., 2020. Effect of Martensitic Transformation and
Grain Size on Surface Roughening Behavior in SUS 304 and SUS 316 Thin Metal
Foils. Eng, Volume 1(2), pp. 167–182
Cheng, C., Wan, M., Meng, B., 2017. Size Effect on the Forming
Limit of Sheet Metal in Micro-Scaled Plastic Deformation Considering Free
Surface Roughening. Procedia Engineering, Volume 207, pp. 1010–1015
Citrawati, F., Dwiwandono, R., Firmansyah, L., 2020. The Effect of
Ni on the Formation of Bainite in Fe-Ni Laterite Steels Through Semi-Continuous
Cooling Method. International Journal of Technology, Volume 11(1), pp.
60–70
Dewi, A.H., Yulianto, D.K., Ana, I.D., Rochmadi., Siswomiharjo, W.,
2020. Effect of Cinnamaldehyde, an Anti-Inflammatory Agent, on the Surface
Characteristics of a Plaster of Paris – CaCO3 Hydrogel for Bone
Substitution in Biomedicine. International Journal of Technology, Volume
11(5), pp. 963–973
Engel, U., Eckstein, R., 2002. Microforming – From Basic Research
to Realization. Journal of Materials Processing Technology, Volume 125-126,
pp. 35–44
Fauzun., Hamdi, M., Ariga, T., 2011. Effect of the Base Metal
Surface Roughness on the Bag-8 Spreading Behavior. International Journal of
Technology, Volume 2(3), pp. 242–247
Furushima, T., Tsunezaki, H., Nakayama, T.,
Manabe, K., Alexandrov, S., 2013. Prediction of Surface Roughening and Necking
Behavior for Metal Foils by Inhomogeneous FE Material Modelling. Key
Engineering Materials, Volume 554-557, pp. 169–173
Ichiro, S., Takao, O.,
Takeji, A., Hideaki, T., 2001. Surface Roughening and Deformation of Grains
during Uniaxial Tension of Polycrystalline Iron. JSME International
Journal Series A, Volume 44, pp. 499–506
Jha, A.K., Sivakumar, D., Sreekumar, K., Mittal,
M.C., 2008. Role of Transformed Martensite in the Cracking of Stainless Steel
Plumbing Lines. Engineering Failure Analysis, Volume 15(8), pp. 1042–1051
Milad, M., Zreiba, N., Elhalouani, F., Baradai,
C., 2008. The Effect of Cold Work on Structure and Properties of AISI 304
Stainless Steel. Journal of Materials Processing Technology, Volume 203(1-3),
pp. 80–85
Qin, Z., Xia, Y., 2020. Role of Strain–Induced Martensitic
Phase Transformation in Mechanical Response of 304L Steel at Different
Strain–Rates and Temperatures. Journal of Materials Processing Technology,
Volume 280, pp. 116–613
Shuro, I., Umemoto, M., Todaka, Y., Yokoyama, S., 2010. Phase Transformation
and Annealing Behavior of SUS 304 Austenitic Stainless Steel Deformed by High
Pressure Torsion. Materials Science Forum, Volume 654, pp. 334–337
Suryadi, S., Kusuma., A.P., Suhadi, A., Priadi, D., 2017. Effect of
Annealing Temperature on Microstructure and Mechanical Properties of Ultra Fine
Grained Brass Produced by Equal Channel Angular Pressing. International
Journal of Technology, Volume 8(1), pp. 58–65
Tomita, Y., Iwamoto, T., 1995. Constitutive Modeling
of TRIP Steel and its Application to The Improvement of Mechanical Properties. International
Journal of Mechanical Sciences, Volume 37(12), pp. 1295–1305
Xue, Z.Y., Zhou, S., Wei, X.C., 2010. Influence
of Pre-Transformed Martensite on Work-Hardening Behavior of SUS 304 Metastable
Austenitic Stainless Steel. Journal of Iron and Steel Research
International, Volume 17, pp. 51–55
Yoshida, K., 2014. Effect of Grain Scale
Heterogeneity on Surface Roughness and Sheet Metal Necking. International
Journal of Mechanical Sciences, Volume 83, pp. 48–56
Zhang,
L., Xu, W., Liu, C., Ma., X., Long, J., 2017. Quantitative Analysis of Surface
Roughness Evolution in FCC Polycrystalline Metal during Uniaxial Tension. Computational
Materials Science, Volume 132, pp. 19–29