• International Journal of Technology (IJTech)
  • Vol 13, No 1 (2022)

Impact of Lambda Value on Combustion Characteristics and Emissions of Syngas-Diesel Dual-Fuel Engine

Impact of Lambda Value on Combustion Characteristics and Emissions of Syngas-Diesel Dual-Fuel Engine

Title: Impact of Lambda Value on Combustion Characteristics and Emissions of Syngas-Diesel Dual-Fuel Engine
Hussein A. Mahmood, Ali O. Al-Sulttani, Naseer A. Mousa, Osam H. Attia

Corresponding email:

Cite this article as:
Mahmood, H.A., Al-Sulttani, A.O., Mousa, N.A.Attia, O.H., 2022. Impact of Lambda Value on Combustion Characteristics and Emissions of Syngas-Diesel Dual-Fuel Engine. International Journal of Technology. Volume 13(1), pp. 179-189

Hussein A. Mahmood Department of Reconstruction and Projects, University of Baghdad, Iraq
Ali O. Al-Sulttani Department of Water Resources Engineering, College of Engineering, University of Baghdad, Iraq
Naseer A. Mousa Department of Reconstruction and Projects, University of Baghdad, Iraq
Osam H. Attia Department of Reconstruction and Projects, University of Baghdad, Iraq
Email to Corresponding Author

Impact of Lambda Value on Combustion Characteristics and Emissions of Syngas-Diesel Dual-Fuel Engine

A deep understanding of the ignition characteristics of syngas-diesel under different lambda values is essential for the application of dual-fuel combustion. In this study, the effect of increasing the lambda value was examined along with the emission characteristics and engine performance of syngas-diesel dual-fuel engines under a constant syngas-to-diesel substitution ratio of 52% at 2000 rpm engine speed. The work involved computational fluid dynamics analysis related to combustion for a four-stroke single-cylinder direct-injection engine. Combustion analysis was carried out using ANSYS Workbench (FLUENT) V16.1 software. According to the simulation results, the maximum pressure, temperature, and nitric oxide emission inside the combustion chamber increased with each increase in the value of lambda, while the emission of carbon dioxide and carbon monoxide decreased inside the engine.

CFD; Combustion; Emission, Lambda; Syngas-diesel dual-fuel engine


Internal combustion engines, and particularly diesel engines, have been utilized by the industrial, agricultural, and automotive sectors due to their low cost of operation, robustness, reliability, high efficiency, resilience, and robustness. Widespread use of engines that run on diesel fuel has resulted in a huge increase in demand for petroleum fuels, which will lead to their depletion. Due to the tremendous exploitation of the traditional petroleum fuels needed for obtaining diesel, it is vital that there is research on alternate fuels that minimize the need for traditional fuels and serve new application areas (Chintala & Subramanian, 2013; Dhole et al., 2014; Mahmood et al., 2017a; Mahmood et al., 2017b; Said et al., 2018; Ali et al., 2019; Wibowo et al., 2020).

In spite of the significant use conventional diesel fuels, their emissions contribute to environmental pollution. In addition, unburnt hydrocarbons, carbon monoxide (CO), nitrogen oxides (NOx), particulate matter, sulfur oxides, and soot are the main pollutants emitted by engines operating on diesel fuel, particularly in urban areas with high population density. Such pollutants have a tendency to aggravate environmental problems such as acid rain, climate change, global warming, and smoke and have a detrimental impact on human health (Re?ito?lu et al., 2015; Ibrahim et al., 2016; Alhamdany et al., 2018; Vellaiyan et al., 2018; Hamid et al., 2020).

Because of the fast depletion of fossil fuels and growing concern for the climate and human health, both engine manufacturers and researchers are being forced to look for alternatives that are reliable, low-cost, and environmentally friendly. Biomass is one of the most promising alternative energy sources that researchers in the field of internal combustion engines have recently been focusing on (Said et al., 2018; Pathak et al., 2021) and can be defined as an environmentally friendly renewable resource. The fermentation or vaporization of different types of biomass goes on to form hydrogen-rich “synthesis gas (syngas)”, which could be used as a main fuel for vehicles or as a partial substitute for traditional types of fuel (Anggraini et al., 2019; Krishnamoorthi et al., 2020). Syngas may be formed from many different raw materials through methane steam reforming, biomass fermentation, autothermal reforming of fossil fuel, ethanol steam reforming, ammonia cracking, partial methane oxidation, and other techniques. In addition, the syngas components acquired from various methods and materials can differ significantly. Carbon dioxide, hydrogen, methane, nitrogen, and carbon monoxide are the major elements of the syngas (Azimov et al., 2011; Feng, 2017; Stylianidis et al., 2017; Ali et al., 2019; Anggraini et al., 2019 ).

Two different methods have been devised for converting diesel engines for syngas, namely the syngas-dedicated and dual-fuel approaches. In the syngas-dedicated approach, ignition is achieved by (typically) using a spark plug, as in a gasoline engine, and the diesel injector is no longer used, following a suitable redesign of the engine’s combustion chamber head. Furthermore, the air intake manifold must be changed to include a syngas injector, control valve, and control unit. The conversion of the engine from diesel to syngas results in a decrease in brake power. The dual-fuel approach, however, applies syngas as the main fuel along with small quantity of diesel as a pilot fuel for ignition. With regard to this approach to conversion, the engine’s combustion chamber head is not changed due to the fact that spark plugs are also needed, while liquid fuel injection continues to be performed by an in-cylinder system of injection. Furthermore, due to the poor autoignition performance of syngas, a small amount of diesel is pumped into the engine’s cylinder to ignite it when it is used as fuel in dual-fuel engines that work under compression ignition (Mahmood et al., 2016; Mahmood et al., 2019).

According to previous literature, little research has been conducted on modifying diesel engines to work under the dual-fuel mode for enhancing fuel economy and decreasing emissions. However, the majority of studies do not take into account the effect of an increase in the lambda value on the emission characteristics and engine performance of syngas-diesel engines. As a result, published work on mixing ratios, combustion characteristics, and pollution for dual-fuel engines with various lambda values remain limited. The goal of this research is to investigate the characteristics of diesel and syngas combustion against different lambda values (1, 1.2, 1.4, and 1.6) under a constant replacement ratio of 52% at an engine speed of 2000 rpm.


    In this study, the emission and combustion characteristics in syngas-diesel dual-fuel engines at different lambda values were numerically investigated using ANSYS Workbench (FLUENT) software. The main results are outlined from the investigation as follows: (1) At a constant replacement ratio for diesel fuel with syngas of 52%, combustion performance improved with increased air content in the combustion chamber. Moreover, the maximum pressure and temperature in the combustion chamber increased with each increase in the lambda value. Moreover, the peak pressure increased from 5,800,428.603 Pa to 6,099,471.415 Pa, 6,291,275.301 Pa, 6,708,188.479 Pa, and 6,708,188 Pa for lambda values of 1, 1.2, 1.4, and 1.6, respectively; (2) At a constant replacement ratio of 52% for diesel fuel with syngas, increases in air content led to decreases in the emission of carbon dioxide and carbon monoxide inside the engine, along with an increase in nitric oxide emission. In addition, the carbon monoxide mass fraction values inside the engine decreased from 0.012865317 to 0.009972716, 0.007938363, and 0.006670433 for lambda values of 1, 1.2, 1.4, and 1.6, respectively. Moreover, the nitric oxide mass fraction values inside the engine raised from 0.00554054 to 0.006849439, 0.007600012, and 0.011217929 for lambda values of 1, 1.2, 1.4, and 1.6, respectively.


Alhamdany, A.A., Hameed, A.Q., Salman, Q.M., 2018. Experimental Investigation for the Removal of Toxic Gases from Vehicle Exhaust using Non-Thermal Plasma. Journal of Engineering, Volume 24(8), pp. 55–70

Ali, A.A.M.M., Ali, K., Kim, C., Lee, Y., Oh, S., Kim, K., 2019. Numerical Study of the Combustion Characteristics in a Syngas-Diesel Dual-Fuel Engine Under Lean Condition. International Journal of Automotive Technology, Volume 20(5), pp. 933–942

Ali, R., Raheemah, S.H., Al-Mayyahi, N.N., 2020. Numerical Analysis of Combustion Characteristics and Emission of Dual and Tri-Fuel Diesel Engine Under Two Engine Speeds. Jordan Journal of Mechanical & Industrial Engineering, Volume 14(2), pp. 205–213

Alrazen, H.A., Talib, A.A., Ahmad, K., 2016. A Two-Component CFD Studies of the Effects of H2, CNG, and Diesel Blend on Combustion Characteristics and Emissions of a Diesel Engine. International Journal of Hydrogen Energy, Volume 41(24), pp. 10483–10495

Anggraini, I.D., Keryanti, M.T.A.P.K., Purwadi, R., Noda, R., Watanabe, T., Setiadi, T., 2019. Bioethanol Production Via Syngas Fermentation of Clostridium Ljungdahlii in a Hollow Fiber Membrane Supported Bioreactor. International Journal of Technology, Volume 10(3), pp. 481–490

Azimov, U., Okuno, M., Tsuboi, K., Kawahara, N., Tomita, E., 2011. Multidimensional CFD Simulation of Syngas Combustion in a Micro-Pilot-Ignited Dual-Fuel Engine using a Constructed Chemical Kinetics Mechanism. International Journal of Hydrogen Energy, Volume 36(21), pp. 13793–13807

Chintala, V., Subramanian, K., 2013. A CFD (Computational Fluid Dynamics) Study for Optimization of Gas Injector Orientation for Performance Improvement of a Dual-Fuel Diesel Engine. Energy, Volume 57, pp. 709–721

Das, S., Debnath, B.K., Das, R.S., Stagni, A., Faravelli, T., 2019. Numerical Investigation of a Porous Media Combustor in a Small-Scale Diesel Engine. Energy, Volume 186, https://doi.org/10.1016/j.energy.2019.07.115

Dhole, A., Yarasu, R., Lata, D., Priyam, A., 2014. Effect on Performance and Emissions of a Dual Fuel Diesel Engine using Hydrogen and Producer Gas as Secondary Fuels. International Journal of Hydrogen Energy, Volume 39(15), pp. 8087–8097

Feng, S., 2017. Numerical Study of the Performance and Emission of a Diesel-Syngas Dual Fuel Engine. Mathematical Problems in Engineering, Volume 2017, https://doi.org/10.1155/2017/6825079

Hamid, M.F., Idroas, M.Y., Mohamed, M., Sa'ad, S., Yew Heng, T., Che Mat, S., Miskam, M.A.,Abdullah, M.K., 2020. Numerical Investigation of the Characteristics of the In-Cylinder Air Flow in a Compression-Ignition Engine for the Application of Emulsified Biofuels. Processes, Volume 8(11), pp. 1–17

Ibrahim, F., Wan Mahmood, W., Abdullah, S., Abu Mansor, M., 2016. Numerical Investigation of Soot Mass Concentration in Compression Ignition Diesel Engine. Journal of Mechanical Engineering and Sciences, Volume 10, pp. 2275–2287

Jones, W., Lindstedt, R., 1988. Global Reaction Schemes for Hydrocarbon Combustion. Combustion and Flame, Volume 73(3), pp. 233–249

Kongre, U.V., Sunnapwar, V.K., 2010. CFD Modeling and Experimental Validation of Combustion in Direct Ignition Engine Fueled with Diesel. International Journal of Applied Engineering Research, Volume 1(3), pp. 508–517

Krishnamoorthi, M., Sreedhara, S., Duvvuri, P.P., 2020. Experimental, Numerical and Exergy Analyses of a Dual Fuel Combustion Engine Fuelled with Syngas and Biodiesel/Diesel Blends. Applied Energy, Volume 263, https://doi.org/10.1016/j.apenergy.2020.114643

Mahmood, H.A., Adam, N.M., Sahari, B., Masuri, S., 2017a. Design of Compressed Natural Gas-Air Mixer for Dual Fuel Engine using Three-Dimensional Computational Fluid Dynamics Modeling. Journal of Computational and Theoretical Nanoscience, Volume 14(7), pp. 3125–3142

Mahmood, H.A., Adam, N.M., Sahari, B., Masuri, S., 2017b. New Design of a CNG-H2-AIR Mixer for Internal Combustion Engines: An Experimental and Numerical Study. Energies, Volume 10(9), pp. 1–27

Mahmood, H.A., Adam, N.M., Sahari, B.B., Masuri, S.U., 2016. Investigation on the Air-Gas Characteristics of Air-Gas Mixer Designed for Bi-Engines. International Journal of Applied Engineering Research, Volume 11(12), pp. 7786–7794

Mahmood, H.A., Adam, N.M., Sahari, B.B., Masuri, S.U., Ahmed, H.E., 2019. An investigation of Air-Gas Mixer Types Designed for Dual-Fuel Engines: Review. Journal of Engineering and Applied Sciences. Volume 14(4), pp. 1014–1033

Pathak, S.K., Nayyar, A., Goel, V., 2021. Optimization of EGR Effects on Performance and Emission Parameters of a Dual Fuel (Diesel + CNG) CI Engine: An Experimental Investigation. Fuel, Volume 291, https://doi.org/10.1016/j.fuel.2021.120183

Re?ito?lu, ?.A., Altini?ik, K., Keskin, A., 2015. The Pollutant Emissions from Diesel-Engine Vehicles and Exhaust Aftertreatment Systems. Clean Technologies and Environmental Policy, Volume 17(1), pp. 15–27

Said, N.H., Ani, F., Said, M.F.M., 2018. Emission and Performance Characteristics of Waste Cooking Oil Biodiesel Blends in a Single Direct Injection Diesel Engine. International Journal of Technology, Volume 9(2), pp. 238–245

Siddique, A., Azeez, S.A., Mohammed, R., 2016. Simulation and CFD Analysis of Various Combustion Chamber Geometry of a CI Engine using CFX. International Refereed Journal of Engineering and Science, Volume 5(8), pp. 33–39

Stylianidis, N., Azimov, U., Maheri, A., Tomita, E., Kawahara, N., 2017. Chemical Kinetics and CFD Analysis of Supercharged Micro-Pilot Ignited Dual-Fuel Engine Combustion of Syngas. Fuel, Volume 203, pp. 591–606

Tsang, W., Hampson, R., 1986. Chemical Kinetic Data Base for Combustion Chemistry. Part I. Methane and Related Compounds. Journal of Physical and Chemical Reference Data, Volume 15(3), pp. 1087–1279

Vellaiyan, S., Amirthagadeswaran, K., Sivasamy, D.B., 2018. Taguchi-Grey Relation Based Multi-Response Optimization of Diesel Engine Operating Parameters with Water-In-Diesel Emulsion Fuel. International Journal of Technology, Volume 9(1), pp. 68–77

Wibowo, C.S., Setiady, N.I., Masuku, M., Hamzah, A., Fedori, I., Nugroho, Y.S., Sugiarto, B., 2020. The Performance of a Spark Ignition Engine using 92 RON Gasoline with Varying Blends of Bioethanol (E40, E50, E60) Measured using a Dynamometer Test. International Journal of Technology, Volume 11(7), pp. 1380–1387