• International Journal of Technology (IJTech)
  • Vol 12, No 4 (2021)

Developing Sub-Bituminous Coal Sintering Ratio for Predicting Coal Ash Slagging Factors

Developing Sub-Bituminous Coal Sintering Ratio for Predicting Coal Ash Slagging Factors

Title: Developing Sub-Bituminous Coal Sintering Ratio for Predicting Coal Ash Slagging Factors
Salmi Samsudin, Nuraini Abdul Aziz, Abdul Aziz Hairuddin, Siti Ujila Masuri

Corresponding email:


Cite this article as:
Samsudin, S., Abdul Aziz, N., Hairuddin, A.A., Masuri, S.U., 2021. Developing Sub-Bituminous Coal Sintering Ratio for Predicting Coal Ash Slagging Factors. International Journal of Technology. Volume 12(4), pp. 791-801

951
Downloads
Salmi Samsudin 1. Department of Mechanical & Manufacturing, Faculty of Engineering, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia 2. TNB Janamanjung Sdn Bhd, Stesen Janakuasa Sultan Azlan Shah, 32400
Nuraini Abdul Aziz Department of Mechanical & Manufacturing Engineering Faculty of Engineering University Putra Malaysia Selangor, Malaysia
Abdul Aziz Hairuddin Department of Mechanical & Manufacturing Engineering Faculty of Engineering University Putra Malaysia Selangor, Malaysia
Siti Ujila Masuri Department of Mechanical & Manufacturing Engineering Faculty of Engineering University Putra Malaysia Selangor, Malaysia
Email to Corresponding Author

Abstract
Developing Sub-Bituminous Coal Sintering Ratio for Predicting Coal Ash Slagging Factors

Fossil fuels such as coal, gas, and distillate are the core fuels for thermal plants. The thermal coal-fired power plant accounts for 40% of global electricity generation. The thermal coal plant is expected to continue generating electricity until 2040, covering roughly 60–75% of the energy demand. Coal is largely used as fuel in thermal power plants in generating electricity. Coal ash causes slagging and fouling at the boiler in the furnace, superheater tube, and pendant tube. Thus, the prediction of coal slagging and fouling is imperative for forecasting boiler repair work and outage. Therefore, this study was conducted in a thermal coal-fired power plant generating 700 megawatts. X-ray diffraction analysis (XRD) was applied to analyze the ash composition. A coal sintering method was developed as an indicator to predict ash slagging. Several coals with different characteristics were selected to conduct the coal ash analysis. Furthermore, sub-bituminous coal sintering indexes for predicting coal ash slagging factors were also developed. From this study, there are minimal ash deposition tendencies for sub-bituminous coal ash with a low sinter ratio of 0.2, whereas the ash deposition tendencies are high for high sinter ratios of 0.8 and above.

Coal ash slagging; Sintering ratio; Slagging factors; Sub-bituminous coal

Introduction

The global demand of electricity increases by about 1.1% in 2018, after declining for the last three years from 2017. Coal as the main fuel is leading by about 2% from the thermal plant in generating electricity (Samsudin and Abd Aziz, 2020). Over the next five years, global coal demand is forecasted to remain stable, supported by the resilient Chinese market, which accounts for half of global consumption. In fact, thermal coal plants cover about 38% of the power market share as the largest sources. The largest share comes from Asian countries, China, and India, while Europe and North America keep on reducing the consumption of coal thermal generation. In the non-power sectors, despite much coal-to-gas switching in China, the demand remained stable (Tiwary, 2001). The international coal trade grew by 4% in 2018, surpassing 1.4 billion tonnes. In 2019, coal was the major fuel in generating power at a fired power plant for the Asian country. In fact, 75% of power generation in China and Indonesia is generated by coal-fired power plants. Coal resources from nature are categorized as non-renewable resources.

      Coal can be classified into bituminous, sub-bituminous, and lignite (brown) by referring to its calorific value. Besides, coal content includes hydrogen, sulfur, nitrogen, and carbon (Samsudin et al., 2020a). The coal content highly contributes the combustion efficiency and an indicator for formation of slagging and fouling deposition. Coal is heated in the boiler throughout the pulverized.

        Ash slagging is formed on the radiant heat transfer section in the furnace area. (Pozzoli et al., 2015; Abd Aziz et al., 2018). Ash fouling is deposited at the superheated (SH) and reheated (RH) regions from the result of convection. Meanwhile, low-temperature fouling is formed at the economizer region. Consequently, the formation of coal ash slagging decreases plant efficiency and availability (Ahmad et al., 2015). In addition, the accumulation of ash in the boiler tube reduces heat transfer, decreases efficiency, and impacts the reliability of the boiler. Thus, predicting ash formation in the boiler furnace provides an advantage in managing the coal and operation of the boiler (Sushil and Batra, 2006; Abd Aziz et al., 2019). Figure 1 shows the ash deposition area, ash slagging, and ash fouling in the boiler furnace.


Figure 1 Coal ash deposition area in boiler furnace

       Prediction of coal ash formation helps maintain a sustainable boiler operation. Coal bituminous slagging indices have been introduced, which are now widely used for predicting slagging in boiler furnaces (Samsudin and Abd Aziz, 2020). However, these indices are only applicable for bituminous coal and cannot be used for coal with lower ranks, such as lignite and sub-bituminous coal (Krevelen, 1993; Speight, 2015). Therefore, a new slagging index is required for low-rank coal. The sintering test is used to determine the resistance of sintering coal ash. Consequently, through the sintered test, the coal slagging indices for sub-bituminous coal can be developed (Speight, 2015).

Conclusion

    From this study, sub-bituminous coal ash with a low sinter ratio of 0.2 had minimal ash deposition tendencies, whereas high sinter ratios of 0.8 and above had high ash deposition tendencies. Furthermore, coal with a high ash content above 3.0% impacted the sinter ratio and consequently increased the tendencies of ash deposition. Besides, this study indicates that the sinter ratio influences the plant heat rate and its performance regarding efficiency.

References

Abd Aziz, N., Samsudin, S., Hairuddin, A.A., 2018. Efficiency and Boiler Parameters Effects in Sub-Critical Boiler with Different Types of Sub-Bituminous Coal. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, Volume 44, pp. 1–10

Abd Aziz, N., Samsudin, S., Hairuddin, A.A., 2019. Energy Audit of Subcritical Plant Performance with Different Types of Sub-Bituminous Coal. Journal of Mechanical Engineering Research and Developments, Volume 42(4), pp. 264–268

Ahmad, A., Hasan, H., Noor, N.A.W.M., Lim, M.T., Husin, S., 2015. Effect of High Temperature on Rear Pass Boiler Tubes in Coal-Fired Power Plant. American Journal of Materials Science, Volume 5 No. 3B, pp. 5–10

Cao, Y., Song, B., Song, M., Meng, F., Wei, Y., Cao, Q., 2020. Capture of Arsenic in Coal Combustion Flue Gas at High Temperature in the Presence of CaSiO3 with Good Anti-Sintering. Fuel Processing Technology, Volume 205, https://doi.org/10.1016/j.fuproc.2020.106428

Frenkel, J.J., 1945. Viscous Flow of Crystalline Bodies Under the Action of Surface Tension. J. Phys., Volume 9(5), p. 385

Gupta, R.D., Ghai, S., Jain, A., 2011. Energy Efficiency Improvement Strategies for Industrial Boilers: A Case Study. Journal of Engineering and Technology, Volume 1(1), pp. 52–56

Ikeda, M., Makino, H., Morinaga, H., Higashiyama, K., Kozai, Y., 2003. Emission Characteristics of NOx and Unburned Carbon in Fly Ash During Combustion of Blends of Bituminous/Sub-Bituminous Coals. Fuel, Volume 82(15–17), pp. 18511857

Krevelen, D.W., 1993. Coal: Typology, Physics, Chemistry, Constitution Amsterdam: Elsevier, p. 979

Marshall, M.R., 2010. Ash Analysis. Food Analysis, Boston: Springer, pp. 105–115

Nakayama, S., Noguchi, Y., Kiga, T., Miyamae, S., Maeda, U., Kawai, M., Tanaka, T., Koyata, K., Makino, H., 1992. Pulverized Coal Combustion in O2/CO2 Mixtures on a Power Plant for CO2 Recovery. Energy Conversion and Management, Volume 33(5–8), pp. 379–386

Namkung, H., Xu, L.H., Kim, C.H., Yuan, X., Kang, T.J., Kim, H.T., 2016. Effect of Mineral Components on Sintering of Ash Particles at Low Temperature Fouling Conditions. Fuel Processing Technology, Volume 141, pp. 82–92

Pozzoli, V.A., Ruiz, M.S., Kingston, D., Razzitte, A.C., 2015. Entropy Production During the Process of Sintering. Procedia Materials Science, Volume 8, pp. 1073–1078

Samsudin, S., Abd Aziz, N., 2020. Effect of Coal with High Moisture Content on Boiler Operation Parameters at Thermal Coal Fired Power Plant. PalArch's Journal of Archaeology of Egypt/Egyptology, Volume 17(9), pp. 6236–6247

Samsudin, S., Zaki, N., Abd Aziz, N., 2020a. SO2 in Flue Gas Desulphurization for Different Types of Sub-Bituminous Coal. In: European Proceedings of Social and Behavioural Sciences Volume 81. Proceedings of the 8th International Conference on Multidisciplinary Research 2019, Penang, Malaysia

Samsudin, S., Zaki, N., Abd Aziz, N., 2020b. Sub-Bituminous Coal Blended Analysis. In: European Proceedings of Social and Behavioural Sciences Volume 81. Proceedings of the 8th International Conference on Multidisciplinary Research 2019, Penang, Malaysia

Sedlak, J., Rican, D., Piska, M., Rozkosny, L., 2015. Study of Materials Produced by Powder Metallurgy using Classical and Modern Additive Laser Technology. Procedia Engineering, Volume 100, pp. 1232–1241

Shui, H., Li, H., Chang, H., Wang, Z., Gao, Z., Lei, Z., Ren, S., 2011. Modification of Sub-Bituminous Coal by Steam Treatment: Caking and Coking Properties. Fuel Processing Technology, Volume 92(12), pp. 2299–2304

Speight, J.G., 2015. Handbook of Coal Analysis. Canada: A John Wiley & Sons, Inc., Publication

Sushil, S., Batra, V.S., 2006. Analysis of Fly Ash Heavy Metal Content and Disposal in Three Thermal Power Plants in India. Fuel, Volume 85(17–18), pp. 2676–2679

Tiwary, R.K., 2001. Environmental Impact of Coal Mining on Water Regime and Its Management. Water, Air, and Soil Pollution, Volume 132(1–2), pp. 185–199

Wood, A.J., Wollenberg, B.F., Sheblé, G.B., 2013. Power Generation, Operation, and Control. United States of America: John Wiley & Sons, Inc.

Xiao, H., Li, F., Liu, Q., Ji, S., Fan, H., Xu, M., Guo, Q., Ma, M., Ma, X., 2017. Modification of Ash Fusion Behavior of Coal with High Ash Fusion Temperature by Red Mud Addition. Fuel, Volume 192, pp. 121–127

Zhang, Z., Zhou, R., Ge, X., Zhang, J., Wu, X. 2020. Perspectives for 700 °C Ultra-Supercritical Power Generation: Thermal Safety of High-Temperature Heating Surfaces. Energy, Volume 190, https://doi.org/10.1016/j.energy.2019.116411