Published at : 20 Jan 2022
Volume : IJtech
Vol 13, No 1 (2022)
DOI : https://doi.org/10.14716/ijtech.v13i1.4819
Daniel Melo Zárate | Faculty of Civil Engineering, University Santo Tomás, 9th avenue No. 51-11, 110231, Bogotá, Colombia |
Fernando Cárdenas | Faculty of Electric Engineering, University Santo Tomás, 9th avenue No. 51-11, 110231, Bogotá, Colombia |
Edwin Francisco Forero | Faculty of Electric Engineering, University Santo Tomás, 9th avenue No. 51-11, 110231, Bogotá, Colombia |
Ferney Oswaldo Peña | Faculty of Civil Engineering, University Santo Tomás, 9th avenue No. 51-11, 110231, Bogotá, Colombia |
The noninvasive
technique of ultrasonic pulse rate (UPV) is increasingly used in the evaluation
of the quality of concrete, providing information about the integrity of
structures and preventing possible disasters. Therefore, for its direct
application, it is necessary to have a prior correlation between the
noninvasive UPV technique and the invasive uniaxial compression resistance
(UCS) assay. While correlations have been determined by various authors, each
has been given specific conditions and guidelines by the authors because there
is no standardized way to perform the correlations. Rather, there are only
experimental tests that have generated experimental correlations—both linear
and logarithmic—with different graphic shapes. Therefore, this research aims,
first, to validate the aforementioned relationship, which allows the
compressure resistance of concrete (f'c) to be determined for a given design of
concrete mixtures following the American Concrete Institute (ACI. 211.1.).
Second, it aims to determine the most accurate trend and the possibly correct
form of the correlation plot between the UPV and UCS. In the first instance, 15
plain concrete specimens were designed with an f’c of 28 MPa, whose dosage was
carried out following the method of ACI. 211.1. Then, UPV and UCS tests were
performed according to regulations in the first 28 days of curing the
specimens. Finally, a logarithmic correlation was obtained between the UPV
values and the values of the invasive tests for the UCS of concrete. A
graphical analysis with some existing correlations of other investigations was
then performed, and a similarity in the logarithmic tendency, with a
coefficient of determination greater than that of the linear trend, was
observed.
Concrete structures; Design concrete mixes; Uniaxial compressive strength (UCS); Ultrasonic pulse velocity (UPV); Ultrasound
Knowing the integrity of concrete structures is important when considering the avoidance or prevention of disasters that may cause loss of life, time, and economic resources. This, added to the exponential growth of the construction sector due to ease of production and the wide use of concrete (Han et al., 2016), has led to a need for structural analysis and monitoring of the mechanical properties of this material, especially the compressive strength of concrete (f'c) —its main property (Sánchez, 2001). This property can be determined using noninvasive and invasive tests, with the noninvasive ones used as complementary tests for concrete (ACI, 2013).
Among the invasive scanning techniques used to
determine the compressive strength of concrete, the most commonly used for the
quality evaluation of plain concrete specimens is the uniaxial compressive
strength test (Hincapié and Vidal, 2003).
This assay has limitations in diagnosing and monitoring the condition of
concrete at any age of the structure. Because cylinders are used for the test, the above are
made from a concrete mixture with which the structural elements are melted (ASTM, 2019; ICONTEC,
2020). However, although there is a method for extracting the nuclei,
which allows a fairly precise determination in real time of the resistance of
the element from which they have been extracted, it presents the disadvantage
of the necessary repair of the same element (Hincapié
and Vidal, 2003; Orozco et al., 2020).
A variety of noninvasive tests can be found in the
literature, including ultrasonic pulse velocity (UPV), ultrasonic echo, impact
echo, sonic echo, and cross hole sonic logging (ACI,
2013). The UPV method is characterized by its application to evaluate
the quality of concrete (Ramadhansyah et al., 2011;
ACI, 2013; ASTM, 2016). The noninvasive scanning technique of UPV
measurement consists of determining the velocity of an ultrasonic wave that
travels through the concrete, estimating the compressive strength of the
concrete using correlations (ASTM, 2016; Orozco et
al., 2020) without altering the physical or chemical properties of the
concrete (Suárez, 2004; Benítez-Herreros, 2011;
Salles et al., 2017; Pedreros et al., 2020).
These types of waves are acoustic pressure waves with frequencies higher than
those of the auditory spectrum of the human ear (Edwin,
2005; Martinez et al., 2007). The UPV
technique involves the following two fundamental parts: the generation of
ultrasonic waves and the corresponding reception of those waves (Rodriguez et al., 2009; Sharma
et al., 2017; Hidayat et al., 2018).
In this sense, previous studies have determined
correlations between the noninvasive measurement of UPV and the magnitude of
the uniaxial compressive strength (UCS) in plain concrete specimens (Trtnik and Gams, 2015; Sabba? and Uyan?k, 2017).
Some have used specific conditions, including Wolfs
et al. (2018), with 3D printed concrete for early ages; Hong et al. (2020), with three different concrete
mixture designs and nine parameters for 123 plain concrete specimens; Orozco et al. (2020), with a design of concrete
mixtures for aggregates and cements from high temperatures, such as the
Caribbean region of Colombia; Pedreros et al.
(2020), with three conventional mixture designs for six plain concrete
specimens; and Troncoso (2012), with concretes
made of arid limestone in Ecuador.
However, the studies present variability in the correlation trend as they depend on individual authors, which generates confusion regarding what the most accurate trend and correct form of the graph for this correlation should be. Moreover, ICONTEC (1997) NTC 4325, as a standard method for the application of UPV in Colombia, and ASTM (2016) C597-16 worldwide do not recommend a particular form for the trend and the graph for the correlation between the UPV and UCS.
This article aims, first, to validate the aforementioned relationship that allows the f’c to be determined using the measurement of UPV based on the correlation of UPV and UCS for a given design of concrete mixtures of A.C.I. 211.1. Second, it aims to determine the most correct trend and the possibly correct form of the graph for the correlation between UPV and UCS, increasing the reliability in the application of the noninvasive UPV test and allowing the f'c to be found directly in buildings’ structural elements.
The results shown in Figures 7b
and 8 indicate that during the 28 days of the concrete curing, the UPV and the
compressive strength of the concrete increase as the days pass. Therefore, this
study proposes a correlation with a logarithmic trend that can be used to
approximate the relationship between the UPV and the compressive strength of
concrete, which would be useful to implement in devices used to measure the UPV
in concrete.
For future research, it is recommended that a correlation be performed
involving the application of the noninvasive and invasive tests in the first 24
hours (red section of Figure 9b) and in the interval after 28 days of curing of
the concrete specimens (green section of Figure 9b), with the objective of
obtaining a more complete picture in those intervals of the graph.
Considering the comparison of Figures 9 and 10, it is suggested that the appropriate form of the correlation graph between the noninvasive UPV test and the invasive UCS test is a logarithmic trend. However, future researchers should consider comparing the correlations in the missing intervals shown in the green and red sections of Figure 9b.
The results obtained in this research demonstrate that the noninvasive UPV test can be established as a reliable way in the in situ estimation of the quality of concrete, thus allowing the f'c of concrete to be determined directly in the structural elements of buildings and avoiding the application of invasive tests that alter the physical or chemical properties of concrete.
This research was supported
by the SIMSE and University Santo Tomás, to whom we are deeply grateful.
Filename | Description |
---|---|
R2-CVE-4819-20210904233653.png | Figura 1 |
R2-CVE-4819-20210904234319.png | Figure 2a |
R2-CVE-4819-20210904234344.png | Figure 2b |
R2-CVE-4819-20210904234704.png | Figure 3a |
R2-CVE-4819-20210904234742.png | Figure 3b |
R2-CVE-4819-20210904234809.png | Figure 4 |
R2-CVE-4819-20210904234830.png | Figure 5a |
R2-CVE-4819-20210904234850.png | Figure 5b |
R2-CVE-4819-20210904234913.png | Figure 6a |
R2-CVE-4819-20210904234936.png | Figure 6b |
R2-CVE-4819-20210904234953.png | Figure 7a |
R2-CVE-4819-20210904235016.png | Figura 7b |
R2-CVE-4819-20210904235034.png | Figura 8 |
R2-CVE-4819-20210904235058.png | Figure 9a |
R2-CVE-4819-20210904235132.png | Figure 9b |
R2-CVE-4819-20210904235154.png | Figure 10 |
Asociación
Colombiana de Ingeniería Sísmica (AIS), 2010. Reglamento Colombiano
de Construcción Sismo Resistente (NSR-10, Titulo C) (Colombian Regulation for
Earthquake Resistant Construction (NSR-10, Title C)). Colombian
Association of Seismic Engineering, 20th Avenue # 84-14 Oficina 502,
Bogotá, D. C., Colombia
American Concrete Institute (ACI), 2013. Report on Nondestructive Test Methods for Evaluation
of Concrete in Structures (ACI 228.2R-13). American Concrete Institute, Farmington Hills, MI, USA
ASTM,
2005. Standard Test Method for
Compressive Strength of Cylindrical Concrete Specimens (ASTM C39/C39M-15). American Society for Testing and Materials, West
Conshohocken, PA, USA
ASTM,
2007. Standard Practice for Preparation
and Curing of Concrete Specimens for Laboratory Testing (ASTM C192/C192M-07).
American Society for Testing and Materials, West Conshohocken, PA, USA
ASTM,
2013. Standard Test Method for Total
Evaporable Moisture Content of Aggregate by Drying (ASTM C566-13). American
Society for Testing and Materials, West Conshohocken, PA, USA
ASTM,
2014. Standard Test Method for Sieve
Analysis of Fine and Coarse Aggregates (ASTM C136/C136M-14). American
Society for Testing and Materials, West Conshohocken, PA, USA
ASTM,
2015a. Standard Test Method for Relative
Density (Specific Gravity) and Absorption of Coarse Aggregate (ASTM C127-15).
American Society for Testing and Materials, West Conshohocken, PA, USA
ASTM,
2015b. Standard Test Method for Relative
Density (Specific Gravity) and Absorption of Coarse Aggregate (ASTM C128-15).
American Society for Testing and Materials, West Conshohocken, PA, USA
ASTM,
2015c. Standard Test Method for Slumping
of Hydraulic Cement Concrete (ASTM C143/C143M-15). American Society for
Testing and Materials, West Conshohocken, PA, USA
ASTM,
2016. Standard Test Method for Pulse
Velocity Through Concrete (ASTM C597-16). American Society for Testing and
Materials, West Conshohocken, PA, USA
ASTM,
2017. Standard Test Method for
Determining Bulk Density ("Unit Weight") and Air Voids of Aggregate
(ASTM C29/C29M-17a). American Society for Testing and Materials, West
Conshohocken, PA, USA
ASTM,
2019. Standard Practice for Preparation
and Curing of Concrete Test Specimens in the Field (ASTM C31/C31M-19).
American Society for Testing and Materials, West Conshohocken, PA, USA
Benítez-Herreros, J.A., 2011. Estudio de la evolución de la velocidad de
ultrasonidos en probetas de hormigón con distintos grados de humedad (Study of the Evolution of the Ultrasound
Velocity in Concrete Specimens with Different Degrees of Humidity). Master’s Thesis, Graduate Program, Polytechnic
University of Madrid, Madrid, Spain
BSI,
2004. Testing Concrete. Determination of Ultrasonic
Pulse Velocity (BS 12504-4). British Standards Institution, United Kingdom, London
Damanik, N.H.C., Susanto, D., Suganda, E., 2020. The Compressive Strength of Unfired Clay Brick
with Sugarcane Bagasse Fiber (SBF) and Bio-Enzyme Reinforcements. International Journal of Technology,
Volume 11(7), pp. 1422–1429
Edwin,
F., 2005. Diseño de un prototipo para la medición de espesores usando
ultrasonido (Design of a Prototype for
Thickness Measurement using Ultrasound). Master’s Thesis, Master of Engineering: Electrical and Electronics,
Industrial University of Santander, Bucaramanga, Colombia
Galván-Ceballos, M., Restrepo, I.A., 2016. Correlación de
la resistencia a compresión uniaxial con la humedad y porosidad eficaz en rocas
(Correlation of Uniaxial Compressive
Strength with Moisture and Effective Porosity in Rocks). Dyna, Volume 83(198), pp. 9–15
Gea, S.M., Batanero, C., Guzmán, R., 2014. El sentido de
la correlación y regresión (The Sense of
Correlation and Regression). Números,
Volume 87, pp. 25–35
Han, A., Gan, B.S., Pratama, M.M.A., 2016. Effects of Graded Concrete on Compressive
Strengths. International Journal of
Technology, Volume 7(5), pp. 732–740
Hidayat,
D., Setianto, Syafei, N.S., Wibawa, B.M., 2018. MOSFET-based High Voltage Short
Pulse Generator for Ultrasonic Transducer Excitation. In: AIP Conference Proceedings, Volume 1927 (030018), pp. 1–7
Hincapié,
A., Vidal, V., 2003. Resistencia al hormigón: Núcleos vs. Cilindros (Strength to Concrete: Cores
vs Cylinders). EAFIT University Magazine, Volume 39(131), pp. 87–95
Hong,
S., Yoon, S., Kim, J., Lee, C., Kim, S., Lee, Y., 2020. Evaluation of Condition
of Concrete Structures using Ultrasonic Pulse Velocity Method. Applied Sciences, Volume 10(2), 706, pp. 1–19
ICONTEC, 1994. Ingeniería civil y arquitectura. Elaboración y curado de
especímenes de concreto para ensayos de laboratorio (Civil Engineering and Architecture.
Preparation and Curing of Concrete Specimens
for Laboratory Tests) (NTC 1377). Instituto Colombiano de Normas Técnicas y Certificación, Bogotá D. C., Colombia
ICONTEC, 1995. Ingeniería
civil y arquitectura. Refrentado de especímenes cilíndricos de concreto (Civil Engineering
and Architecture. Facing of Concrete Cylindrical Specimens) (NTC 504). Instituto Colombiano de Normas
Técnicas y Certificación, Bogotá D. C., Colombia
ICONTEC, 1997. Ingeniería
civil y arquitectura. Método de ensayo
para la determinación de la velocidad del pulso ultrasónico a través del
concreto (Civil Engineering and Architecture. Recommendations
for Measurement of Velocity of Ultrasonic Pulses in Concrete) (NTC 4325). Instituto Colombiano de Normas Técnicas y Certificación,
Bogotá D. C., Colombia
ICONTEC, 2010. Ensayo de
resistencia a la compresión de especímenes cilíndricos de concreto (Compressive
Strength Test of Cylindrical Concrete Specimens) (NTC 673). Instituto
Colombiano de Normas Técnicas y Certificación, Bogotá D. C., Colombia
ICONTEC, 2018. Concretos.
Método de ensayo para determinar el asentamiento del concreto (Concrete. Test Method
for Determining the Settlement of Concrete) (NTC 396). Instituto Colombiano de
Normas Técnicas y Certificación, Bogotá D. C., Colombia
ICONTEC, 2020. Concretos.
Elaboración y curado de especímenes de concreto en el sitio de trabajo
(Concrete. Making and Curing of Concrete Test Specimens
in the Field) (NTC 550). Instituto Colombiano de
Normas Técnicas y Certificación, Bogotá D. C., Colombia
Martinez, R.J.A., Vitola Oyaga, J., Sandoval Cantor,
S.D.P., 2007. Fundamentos teórico-prácticos del ultrasonido (Theoretical-Practical
Foundations of Ultrasound). Tecnura,
Volume 10(20), pp. 4–18
Melo, D., Cárdenas, F., Casagua, J., Mora, V., Pedreros,
L., Ramírez, N., Forero, E., Liscano, M., 2020. Ultrasonic Pulse Velocity Measurement in Simple Concrete
Specimens, pp. 1–7, https://doi:
10.13140/RG.2.2.12737.71521
Orozco, W.M., Ospino, J.O., Montero, A.R., 2020.
Diagnóstico de estructuras de hormigón utilizando ultrasonido (Concrete Structures Diagnostic using Ultrasound).
Colombian
Magazine of Advanced Technologies, Volume
1(35), pp. 38–43
Pedreros, L., Cárdenas, F., Ramírez, N., Forero, E.,
2020. NDT Non-Destructive Test for Quality
Evaluation of Concrete Specimens by Ultrasonic Pulse Velocity Measurement. In: IOP Conference Series: Materials
Science and Engineering, Volume 844(012041), pp. 1–9
Peña-Rey,
F.O., Becerra, J.E.B., Pirabán, A.C.C., Farfán, F.J.R., 2020. Influence of Crushed
Stone Aggregates from the Rodeb Distribution Center in the Mechanical
Properties of the Concretes Employed for the Construction of the Tocancipá Free
Trade Zone. Ing. Solidar, Volume
16(2), pp. 1–23
Ramadhansyah,
P.J., Bakar, B.H.A., Azmi, M.J.M., Ibrahim, M.H.W., 2011. Engineering Properties of
Normal Concrete Grade 40 Containing Rice Husk Ash at Different Grinding Times. International Journal of Technology,
Volume 2(1), pp. 10–19
Robles, S.L., Cárdenas, N.B., 2016. Comparison of the Resistance of Normal Concrete to
Compression, through the Curing Process by the Method of Direct Hydration or
Immersion vs Exudation by Coating in Vinipel. Degree work. Faculty of Engineering, Civil Engineering Program,
Catholic University of Colombia. Bogotá, Colombia
Rodriguez, J., Vitola, J., Sandoval, S., Forero, E.,
2009. Diseño y construcción de un sistema para examen no destructivo de fallas
y defectos en metales utilizando señales ultrasónicas (Design and Construction
of a System for Non-Destructive Examination of Flaws and Defects in Metals using
Ultrasonic Signals). EIA Magazine, Volume 6(12), pp. 9–21
Salles, L.S., Balbo, J.T., Khazanovich, L., 2017. Non-Destructive Ultrasonic Tomography for
Concrete Pavement Evaluation: Signal Processing and Image Analysis of Crucial
Parameters. The IBRACON Structures and
Materials Journal, Volume 10(6), pp. 1182–1191
Sánchez, de-G.D., 2001. Tecnología del concreto y del mortero (Concrete
and Mortar Technology) (5th ed.). Bogotá D.C. - Colombia: Bhandar Editores Ltda
Sabba?, N., Uyan?k, O., 2017. Prediction of Reinforced Concrete
Strength by Ultrasonic Velocities. Journal of Applied Geophysics, Volume 141, pp. 13–23
Sharma, K., Singh, S., Dubey, P.K., 2017. Design of Low Cost Broadband Ultrasonic
Pulser–Receiver. Mapan, Volume 32(2), pp. 95–100
Suárez, A.R., 2004. Ensayo no destructivo de hormigones por
ultrasonidos (Non-destructive Testing of Concrete by Ultrasound). Conference: Course on Non-Destructive Testing by Ultrasound, University of the Republic, Montevideo,
Uruguay. https://doi:
10.13140/2.1.3752.4484
Troncoso, N.L.G., 2012. Correlaciones entre ensayos
destructivos y no destructivos para hormigones fabricados con árido calizo en
Ecuador (Correlations between Destructive and Non-Destructive Tests for
Concretes Made with Limestone Aggregate in Ecuador). Cemento Hormigón, Volume 954, pp. 44–46
Trtnik, G., Gams, M., 2015. Ultrasonic Assessment of Initial
Compressive Strength Gain of Cement based Materials. Cement and Concrete
Research. Volume 67, pp. 148–155
Wolfs,
R.J.M., Bos, F.P., Salet, T.A.M., 2018. Correlation between Destructive
Compression Tests and Non-Destructive Ultrasonic Measurements on Early Age 3D Printed
Concrete. Construction and Building
Materials, Volume 181, pp. 447–454
Yadav,
N., Deo, S.V., Ramtekkar, G.D., 2018. Workable and Robust Concrete using High
Volume Construction and Demolition Waste in Sub Tropical Climate. International Journal of Technology,
Volume 9(3), pp. 537–548