Published at : 07 Dec 2020
Volume : IJtech
Vol 11, No 6 (2020)
DOI : https://doi.org/10.14716/ijtech.v11i6.4432
Sergei Yashin | Department of Management and Public Administration, The Institute of Economics and Entrepreneurship, Lobachevsky University, 23 Gagarin Ave, 603950, Nizhni Novgorod, Russia |
Nadezhda Yashina | Department of Finance and Credit, The Institute of Economics and Entrepreneurship, Lobachevsky University, 23 Gagarin Ave, 603950, Nizhni Novgorod, Russia |
Egor Koshelev | Department of Management and Public Administration, The Institute of Economics and Entrepreneurship, Lobachevsky University, 23 Gagarin Ave, 603950, Nizhni Novgorod, Russia |
Oksana Kashina | Department of Finance and Credit, The Institute of Economics and Entrepreneurship, Lobachevsky University, 23 Gagarin Ave, 603950, Nizhni Novgorod, Russia |
Natalia Pronchatova-Rubtsova | Department of Finance and Credit, The Institute of Economics and Entrepreneurship, Lobachevsky University, 23 Gagarin Ave, 603950, Nizhni Novgorod, Russia |
The
application of simulation modeling in public administration is under study at
the level of interregional interaction in specific federal districts. The main
indicator for development success of a particular federal district is the
natural growth of its population. For this
purpose, a model of foresight of federal district innovation system development
based on the use of a multi-objective genetic algorithm was proposed. Stages of
this foresight included preparation of statistical data for clusters, obtaining
predictive functions for clusters and Pareto frontiers of predictive functions,
and planning synergy effects of clusters of regions and the entire federal
district. In this case, to increase the synergy effect of a federal district,
investment resources and research and development (R&D) costs were planted
to be redirected to those regions where economic and financial resources are
insufficient. This will eventually increase the average per capita income of
the population in the regions of the federal district, which will lead to
population growth in these regions. If R&D costs are redistributed, there
are also information and logistics interactions that confirm the practical
effectiveness of the open innovation model within the federal district. For the
Volga Federal District, this foresight resulted in its total positive reserve
for R&D in the amount of 8,412 million rubles. It should be forwarded to
the Samara Region. Then, the synergy effect of the whole Volga Federal District
will be equal to 429,344 million rubles.
Foresight; Intercluster interaction; Multi-objective genetic algorithm; Simulation modeling
Currently, fundamental research on strategic development issues is increasingly moving into the subject area of regional economics (Rodionov and Velichenkova, 2020; Rytova and Gutman, 2020). At the present time, one of the most important approaches includes the introduction of technologies for simulation modeling in business processes based on the handling of bulk data (Big Data) and its application to the analysis of regional cluster data (Kudryavtseva et al., 2020b). The creation and promotion of clusters in the Russian Federation is one of the main aims of the Russian government and is supported by two governmental programs: the program of the Ministry of Economic Development of the Russian Federation "Pilot innovative territorial clusters" and The Program of the Ministry of Industry and Trade of the Russian Federation “Industrial clusters". Since the debate on the measurement of cluster performance is ongoing in the EU (Ketels and Protsiv, 2020), USA (Delgado et al., 2016), Russia (Stepanova, 2019), and other countries, it is essential to provide adequate approaches and tools for analysis of regional cluster development (Kudryavtseva et al., 2020a). One of the possible solutions to this problem could be the application of Genetic algorithms (Snytyuk and Suprun, 2017).
Genetic algorithm (GA) is
an evolutionary search method used to solve optimization problems using
mechanisms similar to biological evolution (Holland,
1992; Chen et al., 2011). The genetic algorithm itself consists of
several steps: (1) preparatory step – formation of an initial population; (2)
selection; (3) cross breeding; (4) mutation; and (5) solution evaluation and
algorithm stopping (Morov, 2012). An
important concept in GA is the fitness function, otherwise known as the
evaluation function. It represents a measure of fitness for a certain
individual in the population. In optimization problems, the fitness function is
usually maximized and called an objective function (Rutkowska et al., 1999). Tate and Smith (1995) developed a standard GA. In this,
they implemented mutation and cross breeding independently of each other,
unlike most GA implementations, where mutation is used as an auxiliary procedure
for individuals in the population. The algorithm used a chromosome mutation
with a paired exchange (Kravets and Safronova, 2013). Many other modifications were
developed for the GA, for example, greedy GA (Ahuja
et al., 1995) and self-adapting
algorithms with the application of heterogeneous mutations (Michalewicz, 1996), among others. Evolutionary algorithms are
relatively new but are very powerful methods used to find solutions to many
real search and optimization problems. Many of these problems have multiple
objectives, resulting in the need for a set of optimal solutions, known as
effective solutions (Nasruddin et al., 2018). The use of evolutionary algorithms
is a highly effective way to find many effective solutions in a single
simulation run (Kalyanmoy, 2001).
This paper
suggests the application of simulation modeling at the level of interregional
interaction in the Volga Federal District of Russian Federation using GA.
This paper presented novel approach to the assessment
of regional cluster performance using genetic algorithms. From the theoretical
point of view, we presented stages of foresight, including
preparation of statistical data for clusters, obtaining predictive functions
for clusters and Pareto frontiers of predictive functions, and planning of
synergy effects of clusters of regions and the entire federal district. From a practical point of view, this
study resulted in the estimation of the reserve for
R&D for the Volga Federal District based on the data of 25 clusters from
2009–2018. As a result of foresight, we estimated a total positive reserve for
R&D in the amount of 8,412 million rubles, which should be forwarded to the
Samara Region. Then, the synergy effect of the entire VFD would be equal to
429,344 million rubles.
This
paper has been accomplished within the framework of the basic part of the state
task of the Ministry of Education and Science of the Russian Federation,
project 0729-2020-0056 “Modern methods and models of diagnostics, monitoring,
prevention and overcoming of crisis phenomena in the economy under conditions
of digitalization as a way to ensure economic security of the Russian
Federation”.
Ahuja, R.K., Orlin, J.B., Tivari, A., 1995. A Greedy
Genetic Algorithm for the Quadratic Assignment Problem. Working Paper Sloan School of Management, Volume 2, pp. 13–17
Chen, Y., Feng, C., Wang, Y., Wu, H., 2011. Using BIM Model and Genetic
Algorithms to Optimize the Crew Assignment for Construction Project
Planning. International Journal of
Technology, Volume 2(3), pp. 179–187
Delgado, M., Porter, M.E., Stern, S., 2014. Clusters, Convergence, and
Economic Performance. Research Policy, Volume 43(10), pp. 1785–1799
Delgado,
M., Porter, M.E., Stern, S., 2016. Defining Clusters of Related Industries.
Journal of Economic Geography, Volume 16(1), pp. 1–38
Holland, J.H., 1992. Adaptation in
Natural and Artificial Systems: An Introductory Analysis with Applications to
Biology, Control, and Artificial Intelligence. Cambridge: The MIT Press
Kalyanmoy, D., 2001. Multiobjective
Optimization using Evolutionary Algorithms. New York: John Wiley &
Sons, Inc
Ketels,
C., Protsiv, S., 2020. Cluster Presence and Economic Performance: A New Look
Based on European Data. Regional Studies,
10 Aug 2020, pp. 1–13
Kravets, O.Y., Safronova, A.P., 2013. Overview of Structural Synthesis
Methods to Solve Quadratic Assignment Problems. Modern Science: Current Problems of Theory and Practice: Scientific and
Practical Journal: Series Natural and Economic Sciences, Volume 9(10), pp.
66–72
Kudryavtseva,
T., Kulagina, N., Lysenko, A., Berawi, M.A., Skhvediani, A., 2020a. Developing
Methods to Assess and Monitor Cluster Structures: The Case of Digital Clusters.
International Journal of Technology,
Volume 11(4), pp. 667–676
Kudryavtseva,
T., Skhvediani, A., Berawi, M.A., 2020b. Modeling Cluster Development using Programming
Methods: Case of Russian Arctic Regions. Entrepreneurship and Sustainability
Issues, Volume 8(1), pp. 150–176
Martin, B.R., 1983. Project Foresight, a Proposal Submitted to
the Cabinet Office. Brighton, UK: SPRU, University of Sussex
Martin, B.R., 1989.
Research Foresight: Priority-setting in
Science. London and New York: Pinter Publishers
Martin, B.R., 2010. The Origins of the Concept of ‘Foresight’ in Science
and Technology: An Insider’s Perspective. Technological Forecasting and Social
Change, Volume 77(9), pp. 1438–1447
Michalewicz, Z., 1996. Genetic
Algorithms + Data Structures = Evolution Programs. New York:
Springer-Verlag
Morov, V.A., 2012. Application of the Genetic Algorithm to Optimization
Problems. Implementation of the Genetic Algorithm for the Traveling Salesman
Problem. Journal of the Amur State
University: Series Natural and Economic Sciences, Volume 57, pp. 18–22
Nasruddin, Nasution, S., Aisyah, N., Surachman,
A., Wibowo, A.S., 2018. Exergy Analysis and Exergoeconomic Optimization of a
Binary Cycle System using a Multi Objective Genetic Algorithm. International Journal of Technology,
Volume 9(2), pp. 275–286
Rodionov,
D., Velichenkova, D., 2020. Relation between Russian Universities and Regional
Innovation Development. Journal of Open
Innovation: Technology, Market, and Complexity, Volume 6(4), pp. 118–144
Rutkowska,
D., Pilinski, M., Rutkowski, L., 1999. Sieci
Neuronowe, Algorytmy Genetyczne i Systemy Rozmyte. Warszawa, Lodz:
Wydawnictwo Naukowe PWN
Rytova,
E., Gutman, S., 2020. Assessment of Regional Development Strategy in the
Context of Economy Digitization on the Basis of Fuzzy Set Method. IOP
Conference Series: Materials Science and Engineering, Volume 497(1), pp.
12–60
Skhvediani, A., Kudryavtseva, T., Rodionov, D. 2020.
Regional Industrial Specialization: Case of Russian Electrical Equipment,
Electronic and Optical Equipment Industry. In:
Rodionov D., Kudryavtseva T., Berawi M.A., Skhvediani A. (eds) Innovations in
Digital Economy. SPBPU IDE 2019. Communications in Computer and Information
Science, Volume 1273. Springer, Cham, pp. 125–139
Snytyuk,
V.Y., Suprun, O.O., 2017. Evolutionary Clustering as Technique of Economics
Problems Solving. Electronics and Control
Systems, Volume 4(54), pp. 95–101
Stepanova,
E.V., 2019. Evaluation of Innovation Potential in Russian Clusters. IOP
Conference Series: Earth and Environmental Science, Volume 315(2), pp.
22–91
Tate, D.M., Smith A.E., 1995. A
Genetic Approach to the Quadratic Assignment Problem. Computers & Operations Research, Volume 22(1), pp. 73–83
Tukkel, I.L., Golubev, S.A., Surina, A.V., Tsvetkova, N.A., 2013. Methods and Tools of Innovative Development
of Industrial Enterprises. St.-Petersburg: BHV-Petersburg
Yashin, S.N., Trifonov, Yu.V., Koshelev, E.V., 2017. Methods of
Foresight of the Cluster using the Arbitrage Technology. Innovations, Volume 11, pp. 42–53
Yashin,
S.N., Koshelev, E.V., Kostrigin, R.V., 2019. Compilation of Linear Functional of the Value of the Innovation and
Industrial Cluster for the Region. Management
of Economic Systems: Scientific Electronic Journal, Volume 130(12), pp. 1–19