• International Journal of Technology (IJTech)
  • Vol 13, No 2 (2022)

Characteristics of Cd(II) Biosorption into Streamer Biofilm Matrices

Characteristics of Cd(II) Biosorption into Streamer Biofilm Matrices

Title: Characteristics of Cd(II) Biosorption into Streamer Biofilm Matrices
Andi Kurniawan, Tatsuya Yamamoto, Arning Wilujeng Ekawati, Lutfi Ni'matus Salamah, Abd. Aziz Amin, Adi Tiya Yanuar

Corresponding email:


Cite this article as:
Kurniawan, A., Yamamoto, T., Ekawati, A.W., Salamah, L.N., Amin, A.A., Yanuar, A.T., 2022. Characteristics of Cd(II) Biosorption into Streamer Biofilm Matrices. International Journal of Technology. Volume 13(2), pp. 367-377

970
Downloads
Andi Kurniawan - Faculty of Fisheries and Marine Science, University of Brawijaya, Jalan Veteran, Malang, 65145, Indonesia - Coastal and Marine Research Centre (PSPK-UB), University of Brawijaya, Jalan Veteran, Mal
Tatsuya Yamamoto Graduate School of Life Science, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, 525-8577, Japan
Arning Wilujeng Ekawati Faculty of Fisheries and Marine Science, University of Brawijaya, Jalan Veteran, Malang, 65145, Indonesia
Lutfi Ni'matus Salamah Coastal and Marine Research Centre (PSPK-UB), University of Brawijaya, Jalan Veteran, Malang, 65145, Indonesia
Abd. Aziz Amin Microbase Research Group, Interdisciplinary Postgraduate Program, University of Brawijaya, Jalan MT. Haryono 169, Malang, 65145, Indonesia
Adi Tiya Yanuar Microbase Research Group, Interdisciplinary Postgraduate Program, University of Brawijaya, Jalan MT. Haryono 169, Malang, 65145, Indonesia
Email to Corresponding Author

Abstract
Characteristics of Cd(II) Biosorption into Streamer Biofilm Matrices

This study analyzed the characteristics of Cd(II)[MOU1]  biosorption into the natural streamer biofilm matrices collected from the Brantas River in Indonesia to develop streamer biofilms as biosorbent pollutant ions. The biosorption features were studied by investigating the kinetics of adsorption and the adsorption isotherm of Cd(II) into the streamer biofilm. The adsorption sites of biofilms were investigated by analyzing the biofilms' electric charge characteristics and Fourier Transform Infrared Spectroscopy (FTIR) spectra. The results of this study suggest that the adsorption of Cd(II) to the biofilm streamer is a physicochemical process where the electrically charged sites promoted by ionization functional groups in the biofilm polymers functioned as adsorption sites. The adsorption of Cd(II) into streamer biofilm is well suited to the Langmuir adsorption pattern. Cd(II) adsorption's maximum capacity to the biofilm is estimated to be approximately 14.29 mmol/g, while the equilibrium constant is approximately 0.06 L/mmol. This study demonstrates the biosorption of Cd(II) using biofilm streamers that formed naturally in rivers in Indonesia, a phenomenon that had rarely been reported. This study's results reveal that the natural streamer biofilm formed in Indonesia's Brantas River is a promising biosorbent for Cd(II) removal in water pollution treatments.

Adsorption; Aquatic ecosystem; Heavy metals; Microbial ecology; Water pollutant

Introduction

Water pollution has become a leading environmental problem in developing countries, including Indonesia (Chojnacka, 2010). Pollutants in the aquatic ecosystem include heavy metals such as Cd(II). This heavy metal is largely used for industrial purposes (Suprapto et al., 2020), such as in the coating and electrical industries (Chojnacka, 2010), and has become a primary battery component. Cd(II) is a cancer hazard and can cause lung and kidney diseases (Fomina and Gadd, 2014; He et al., 2016; Nasir and Faizal, 2016; Yi et al., 2017; Locosselli et al., 2018). The quality standard for Cd(II) concentration in aquatic ecosystems, such as rivers in Indonesia, is a maximum of 0.01 mg/L. Excessive use of Cd(II) can pollute aquatic environments.

   Numerous technologies have been proposed to reduce water pollution. These technologies should be sufficient, inexpensive, and environmentally friendly (Julien et al., 2014; Fomina and Gadd, 2014; Jobby et al., 2018). One alternative technology is using biological materials, or biomass, to immobilize contaminants (Jawad et al., 2018a; Kusrini et al., 2018). Biomass-based technologies have many advantages because they use inexpensive and renewable materials and can recover pollutants (Jawad et al., 2016; Desmiarti et al., 2019). Biosorption is a biomass-based technology that is widely proposed as an alternative pollution treatment. The choice of biosorbents strongly influences the success of biosorption. The evaluation of various types of biosorbents to develop biosorption-based water pollution treatments has become one of the latest research themes related to biosorption (Olufemi and Eniodunmo, 2018).

       The alternative biosorbents that have attracted many experts' attention are microbes in aquatic ecosystems (Gadd, 2009; Jimoh & Cowan, 2017; Cheng et al., 2018). The primary habitat of microbes in aquatic ecosystems is a biofilm (Flemming and Wingener, 2010; Kurniawan and Yamamoto, 2019). Biofilm is defined as a microbial community matrix attached to the substrate (da Silva et al., 2020). Biofilms that grow in river ecosystems are called streamer biofilms. Streamer biofilm matrices can attract and retain various pollutant ions from the surrounding waters, including heavy metal ions such as Cd(II) (Gadd, 2009; Volesky, 2007).

   Although understanding the characteristics of Cd(II) biosorption by streamer biofilms can improve the development of water purification technology (D'Acunto et al., 2018; Rittman, 2018), studies remain limited about the biosorption of Cd(II) using biofilm streamers formed naturally in rivers. Most of the studies use single-species biofilms or laboratory-grown biofilms (Hiraki et al., 2009; Kurniawan et al., 2015; Gul et al., 2018).
    The present study analyzed the biosorption of Cd(II) by the natural streamer biofilm matrices collected from the Brantas River in Malang City, Indonesia. This study suggested that the streamer biofilm matrices may adsorb Cd(II) through a physicochemical process. According to this study's results, the natural streamer biofilm matrices formed in the Brantas River may become a potential alternative biosorbent for Cd(II) removal from aquatic ecosystems.

Conclusion

The present study shows that biofilm streamers carry both positively and negatively charged sites. The streamer biofilm matrices can attract and adsorb heavy metal ions such as Cd(II) from the surrounding water. The streamer biofilms have been shown to quickly adsorb Cd(II) through a physicochemical reaction. The maximum biosorption capacity (Nmax) of the streamer biofilm matrix for Cd(II) is 14.29 mmol/g, and the adsorption equilibrium constant (b) is 0.06 L/mmol. According to this study's result, the streamer biofilm formed naturally in the Brantas River is a promising biosorbent in the removal of water pollutants. However, pollutants entering rivers include more than Cd(II). Hence, to develop river biofilms as biosorbent for river pollution, future studies will focus on the biosorption of other heavy metals by biofilm formed in the Brantas River.

Acknowledgement

        This research is supported by the government of Indonesia’s Directorate for Research and Community Service, the Directorate General of Strengthening Research and Development, and the Ministry Education, Culture, Research and Technology under Contract Number: 439.1/UN10.C10/TU/2021. The authors would like to thank Dr. Yuki Tsuchiya from Nihon University for the interpretation of research data.

References

Alqadami, A.A., Naushad, M., Ahamad, T., Algamdi, M., Alshahrani, A., Uslu, H., Shukla, S., 2020. Removal of Highly Toxic Cd(II) Metal Ions From Aqueous Medium Using Magnetic Nanocomposite: Adsorption Kinetics, Isotherm and Thermodynamics. Desalination and Water Treatment, Volume 181, pp. 355–361

Awal, M.R., Khraisheh, M., Alhatri, N.H., Luqman, M., Islam, A., Karim, M.R., Rahman, M.M., Khaleque, M.A., 2018. Efficient Detection and Adsorption of Cadmium(II) Ions Using Innovative Nano-Composite Materials. Chemical Engineering Journal, Volume 343, pp. 118–117

Barsbay, M., Kavakl?, P.A., Tilki, S., Kavakl?, C., Güven, O., 2018. Porous Cellulosic Adsorbent for the Removal of Cd(II), Pb(II) and Cu(II) Ions From Aqueous Media. Radiation Physics and Chemistry, Volume 142, pp. 70–76

Chen, Q., Zheng, J., Zheng, L., Dang, Z., Zhang, L., 2018. Classical Theory and Electron-Scale View of Exceptional Cd(II) Adsorption Onto Mesoporous Cellulose Biochar via Experimental Analysis Coupled with DFT Calculations. Chemical Engineering Journal, Volume 350, pp. 1000–1009

Cheng, X., Xu, W., Wang, N., Mu, Y., Zhu, J., Luo, J., 2018. Adsorption of Cu²? and Mechanism by Natural Biofilm. Water Science and Technology, Volume 78(3–4), pp. 721–731

Chojnacka, K., 2010. Biosorption and Bioaccumulation - The Prospects for Practical Applications. Environmental International, Volume 36(3), pp 299–307

da Silva, G.O.A., Pennafirme, S., da Costa Pereira, D., Waite, C.C.C., Lopes, R.T., Lima, I.C.B., Crapez, M.A.C., 2020. Monitoring of Bacterial Community Structure and Growth: An Alternative Tool for Biofilm Microanalysis. Biofilm, Volume 2, p. 100034

D'Acunto, B., Frunzo, L., Mattei, M.R., 2018. On A Free Boundary Problem for Biosorption in Biofilms. Nonlinear Analysis: Real World Applications, Volume 39, pp. 120–141

Desmiarti, R., Martynis, M., Trianda, Y., Li, F., Viqri, A., Yamada, T., 2019. Phenol Adsorption in Water by Granular Activated Carbon From Coconut Shell. International Journal of Technology, Volume 10(8), pp. 1488–1497

Ecer, U., Yilmaz, S., Sahan, T., 2018. Highly efficient Cd(II) Adsorption Using Mercapto-Modified Bentonite as a Novel Adsorbent: An Experimental Design Application Based on Response Surface Methodology for Optimization. Water Science and Technology, Volume 78(5-6), pp. 1348–1360

Flemming, H.C., Wingender, J., 2010. The Biofilm Matrix. Nature Reviews Microbiology, Volume 8, pp. 623–633

Fomina, M., Gadd, GM., 2014. Biosorption: Current Perspective on Concept, Definition and Application. Bioresource Technology, Volume 160, pp. 3–14

Gadd, G.M., 2009. Biosorption: Critical Review of Scientific Rationale, Environmental Importance and Significance for Pollution Treatment. Journal of Chemical Technology and Biotechnology, Volume 84(1), pp. 13–28

Gul, B.Y., Imer, D.Y., Park, P.K., Koyuncu, I., 2018. Selection of Quorum Quenching (QQ) Bacteria for Membrane Biofouling Control: Effect of Different Gram-Staining QQ Bacteria, Bacillus Sp. T5 and Delftia Sp. T6, on Microbial Population in Membrane Bioreactors. Water Science and Technology, Volume 78(1-2), pp. 358–366

Guo, S., Dan, Z., Duan, N. Chen, G., Gao, W., Zhao, W., 2018. Zn(II), Pb(II), and Cd(II) Adsorption From Aqueous Solution by Magnetic Silica Gel: Preparation, Characterization, and Adsorption. Environmental Science and Pollution Research, Volume 25 (31), pp. 30938–30948

He, H.J., Xiang, Z.H., Chen, X.J., Chen, H., Huang, H., Wen, M., 2018. Biosorption of Cd(II) From Synthetic Wastewater Using Dry Biofilms From Biotrickling Filters. International Journal of Environmental Science and Technology, Volume 15(7), pp. 1491–1500

He, J., Ji, Z., Wang, Q., Liu, C., Zhou, C., 2016. Effect of Cu and Pb Pollution on the Growth and Antioxidant Enzyme Activity of Suaeda Heteroptera. Ecological Engineering, Volume 87, pp. 102–109

Hiraki, A., Tsuchiya, T., Fukuda, Y., Yamamoto, T., Kurniawan, A., Morisaki, H., 2009. Analysis of How a Biofilm Forms on the Surface of the Aquatic Macrophyte Phragmites Australis. Microbes and Environment, Volume 24(3), pp. 265–272

Jawad, A.H., Hum, N.N.M.F., Farhan, A.M., Mastuli, M.S., 2020. Biosorption of Methylene Blue Dye by Rice (Oryza Sativa L.) Straw: Adsorption and Mechanism Study. Desalination and Water Treatment, Volume 190, pp. 322–330

Jawad, A.H., Ngoh, Y.S., Radzun, K.A., 2018a. Utilization of Watermelon (Citrullus Lanatus) Rinds as A Natural Low-Cost Biosorbent for Adsorption of Methylene Blue: Kinetic, Equilibrium and Thermodynamic Studies. Journal of Taibah University for Science, Volume 12(4), pp. 371–381

Jawad, A.H., Rashid, R.A., Mahmoud, R.M.A., Ishak, M.A.M., Kasim, N.N., Ismail, K., 2016. Adsorption of Methylene Blue Onto Coconut (Cocos Nucifera) Leaf: Optimization, Isotherm and Kinetic Studies. Desalination and Water Treatment, Volume 57(19), pp. 1-15

Jawad, A.H., Waheeb, A.S., Rashid, R.A., Nawawi, W.I., Yousif, E., 2018b. Equilibrium Isotherms, Kinetics, and Thermodynamics Studies of Methylene Blue Adsorption on Pomegranate (Punica Granatum) Peels as A Natural Low-Cost Biosorbent. Desalination and Water Treatment, Volume 105, pp. 322–331

Jimoh, T.A., Cowan, A.K., 2017. Extracellular Polymeric Substance Production in High Rate Algal Oxidation Ponds. Water Science and Technology, Volume 76(10), pp. 2647–2654

Jobby, R., Jha, P., Yadav, A.K., Desai, N., 2018. Biosorption and Biotransformation of Hexavalent Chromium [Cr(VI)]: A Comprehensive Review. Chemosphere, Volume 207, pp. 255–266

Julien, C., Laurent, E., Legube, B., Thomassin, J.H., Mondamert, L., Labanowski, J., 2014. Investigation on the Iron-Uptake by Natural Biofilms. Water Research, Volume 50, pp. 212–220

Kataria, N., Garg, V.K., 2018. Optimization of Pb (II) and Cd (II) Adsorption Onto ZnO Nanoflowers Using Central Composite Design: Isotherms and Kinetics Modelling. Journal of Molecular Liquids, Volume 271, pp. 228–239

Kenawy, I.M., Hafez, M.A.H., Ismail, M.A., Hashem, M.A., 2018. Adsorption of Cu(II), Cd(II), Hg(II), Pb(II) and Zn(II) From Aqueous Single Metal Solutions by Guanyl-Modified Cellulose. International Journal of Biological Macromolecules, Volume 107(B), pp. 1538–1549

Kurniawan, A., Tsuchiya, A., Eda, S., Morisaki, H., 2015. Characterization of the Internal Ion Environment of Biofilms Based on Charge Density and Shape of Ion. Colloids and Surfaces B: Biointerfaces, Volume 136, pp. 22–26

Kurniawan, A., Yamamoto, T., 2019. Accumulation of NH?? and NO?? Inside Biofilms of Natural Microbial Consortia: Implication on Nutrients Seasonal Dynamic in Aquatic Ecosystems. International Journal of Microbiology, Volume 2019, pp. 1–7

Kusrini, E., Kinastiti, D.D., Wilson, L., Usman, A., Rahman, A., 2018. Adsorption of Lanthanide Ions From an Aqueous Solution in Multicomponent Systems Using Activated Carbon From Banana Peels (Musa Paradisiaca L.). International Journal of Technology, Volume 9(6), pp. 1132–1139

Lewandowski, Z., Beyenal, H., 2007. Fundamental of Biofilm Research. CRC Press, New York.

Li, B., Guo, J., Lv, K., Fan, J., 2019. Adsorption of Methylene Blue and Cd(II) Onto Maleylated Modified Hydrochar From Water. Environmental Pollution, Volume 254(B), p. 113014

Li, Z., Wang, L., Meng, J., Liu, X., Xu, J., Wang, F., Brookes, P., 2018. Zeolite-Supported Nanoscale Zero-Valent Iron: New Findings on Simultaneous Adsorption of Cd(II), Pb(II), and As(III) in Aqueous Solution and Soil. Journal of Hazardous Materials, Volume 344, pp. 1–11

Locosselli, G.M., Chaco?n-Madrid, K., Arruda, M.A.Z., Pereira de Camargo, E., Moreira, T.C.L., Saldiva de Andre?, C.D., Afonso de Andre?, P., Julio Singer, J.M., Saldiva, P.H.N., Buckeridge, M.S., 2018. Tree Rings Reveal the Reduction of Cd, Cu, Ni and Pb Pollution in the Central Region of São Paulo, Brazil. Environmental Pollution, Volume 242 (A), pp. 320–328

Nasir, S., Faizal, S., 2016. Ceramic Filters and Their Application for Cadmium Removal From Pulp Industry Effluent. International Journal of Technology, Volume 7(5), pp. 786–794

Ningrum, E.O., Sakohara, S., Gotoh, T., Suprapto, S., Humaidah, N., 2019. The Effect of Cation and Anion Species on the Transition and Adsorption Behaviors of Thermosensitive Sulfobetaine Gel-Based Adsorbent. International Journal of Technology, Volume 10(3), pp. 443–452

Olufemi, B., Eniodunmo, O., 2018. Adsorption of Nickel(II) Ions From Aqueous Solution Using Banana Peel and Coconut Shell. International Journal of Technology, Volume 9(3), pp. 434–445

Rittman, B.E., 2018. Biofilms, Active Substrata, and Me. Water Research, Volume 132, pp. 135–145

Suprapto, S., Gotoh, T., Humaidah, N., Febryanita, R., Firdaus, M.S., Ningrum, E.O., 2020. The Effect of Synthesis Condition of the Ability of Swelling, Adsorption, and Desorption of Zwitterionic Sulfobetaine-Based Gel. International Journal of Technology. Volume 11(2), pp. 299–309

Sutirman, Z.A., Sanagi, M.M., Abd Karim, K.J., Ibrahim, W.A.W., Jume, B.H., 2018. Equilibrium, Kinetic and Mechanism Studies of Cu(II) and Cd(II) Ions Adsorption by Modified Chitosan Beads. International Journal of Biological Macromolecules, Volume 116, pp. 255–263

Volesky, B., 2007. Biosorption and Me. Water Research, Volume 41(18), pp. 4017–4029

Xie, X., Gao, H., Luo, X., Su, T., Zhang, Y., Qin, Z., 2019. Polyethyleneimine Modified Activated Carbon for Adsorption of Cd(II) in Aqueous Solution. Journal of Environmental Chemical Engineering, Volume 7(3), p. 103183

Yi, Y., Lv, J., Zhong, N., Wu, G., 2017. Biosorption of Cu²? by a Novel Modified Spent Chrysanthemum: Kinetics, Isotherm and Thermodynamics. Journal of Environmental Chemical Engineering, Volume 5(4), pp. 4151–4156

Zhang, G., Liu, N., Luo, Y., Zhang, H., Su, L., Oh, K., Cheng, H., 2021. Efficient Removal of Cu(II), Zn(II), and Cd(II) From Aqueous Solutions by a Mineral-Rich Biochar Derived From a Spent Mushroom (Agaricus Bisporus) Substrate. Materials, Volume 14(1), pp. 1–17