• International Journal of Technology (IJTech)
  • Vol 11, No 5 (2020)

Clinical Evaluation of Locally Made Flocked Swabs in Response to the COVID-19 Pandemic in a Developing Country

Clinical Evaluation of Locally Made Flocked Swabs in Response to the COVID-19 Pandemic in a Developing Country

Title: Clinical Evaluation of Locally Made Flocked Swabs in Response to the COVID-19 Pandemic in a Developing Country
Narottama Tunjung, Prasetyanugraheni Kreshanti, Yulia Rosa Saharman, Yudan Whulanza, Sugeng Supriadi, Mochammad Chalid, Margareth Ingrid Anggraeni, Agus Rizal A. H. Hamid, Chaula Luthfia Sukasah

Corresponding email:


Cite this article as:
Tunjung, N., Kreshanti, P., Saharman, Y.R., Whulanza, Y., Supriadi, S., Chalid, M., Anggraeni, M.I., Hamid, A.R.A.H., Sukasah, C.L., 2020. Clinical Evaluation of Locally Made Flocked Swabs in Response to the COVID-19 Pandemic in a Developing Country. International Journal of Technology. Volume 11(5), pp. 878-887

732
Downloads
Narottama Tunjung Plastic Reconstructive and Aesthetic Surgery Division, Department of Surgery, Ciptomangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
Prasetyanugraheni Kreshanti Plastic Reconstructive and Aesthetic Surgery Division, Department of Surgery, Ciptomangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
Yulia Rosa Saharman Department of Clinical Microbiology, Faculty of Medicine, Universitas Indonesia, 10320, Jakarta, Indonesia
Yudan Whulanza Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, West Java, 1625, Indonesia
Sugeng Supriadi Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, West Java, 1625, Indonesia
Mochammad Chalid Department of Metallurgy and Material Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, West Java, 1625, Indonesia
Margareth Ingrid Anggraeni Plastic Reconstructive and Aesthetic Surgery Division, Department of Surgery, Ciptomangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
Agus Rizal A. H. Hamid Department of Urology, Ciptomangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia address
Chaula Luthfia Sukasah Plastic Reconstructive and Aesthetic Surgery Division, Department of Surgery, Ciptomangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, 10430, Indonesia
Email to Corresponding Author

Abstract
Clinical Evaluation of Locally Made Flocked Swabs in Response to the COVID-19 Pandemic in a Developing Country

The coronavirus disease 2019 (COVID-19) pandemic has caused an international shortage of nasopharyngeal flocked swabs, which are one of the main supplies for diagnostic testing. In response to this issue, our institution developed locally made nasopharyngeal swabs. This report aims to provide a clinical evaluation by conducting a sterility test, reverse transcription polymerase chain reaction (RT-PCR) compatibility test, and a user-based survey test of two batches of locally made flocked swabs. Sterility and compatibility tests were conducted at our microbiology laboratory. Participants with clinical suspicion of COVID-19 were scheduled for swab tests using Flocked Swab HS-19 and samples obtained were tested using the RT-PCR method. The cycle threshold (Ct) value of the samples was recorded. A user-based survey was conducted to evaluate the swab stick and flocked-fiber tip performance. The sterility test showed no evidence of bacterial growth on both blood agar and thioglycolate medium. RT-PCR compatibility test from Ct value of 33 samples of the first batch and 30 samples of the second batch was recorded with a mean Ct of 27.17±2.96 and 23.99±2.18, respectively. Six parameters of the swab stick (comfortability, smoothness, flexibility, durability, applicability, and breakpoint performance) showed satisfactory scores with an average of 4.14 out of 5.0 for the first batch and 4.16 for the second batch, while 4 parameters of the flocked-fiber tip (fiber adherence, thickness, symmetricity, and sample collection sufficiency) revealed acceptable scores with an average of 3.6 out of 5.0 for the first batch and 3.75 for the second batch. This study indicates that locally made flocked swabs are satisfactory and clinically applicable for testing and diagnosing COVID-19. Furthermore, mass production and distribution across the country are expected. The development of these swabs, which involved multidisciplinary teamwork and various industrial partners, portrayed a valuable lesson on how to cope with the pandemic through innovation.

 

COVID-19; RNA extraction; Specimen collection; Swab

Introduction

    The coronavirus disease 2019 (COVID-19) was first reported in China in December 2019. Since then, the pandemic has exploded with more than 6.5 million cases globally and more than 380,000 deaths (National Institutes of Health, 2020). The World Health Organization (WHO) urged all nations to increase the testing for suspected cases in order to mitigate the spread of the virus (WHO, 2020). As a first-line method for diagnosing COVID-19, reverse transcription polymerase chain reaction (RT-PCR) molecular assays remain the gold standard test for the diagnosis of COVID-19 infection with isolated samples from respiratory tract specimens using nasopharyngeal flocked swabs (Ali et al., 2015; Ahn et al., 2020; WHO, 2020).

        Indonesia remains in the escalating phase of the COVID-19 curve with 147,211 confirmed cases and 6,418 deaths (until August 20, 2020). The first case of COVID-19 in Indonesia was reported in March 2019 and 1.969.941 specimens have been tested (Kementerian Kesehatan Republik Indonesia, 2020). Moreover, with its 273 million population, Indonesia’s testing ratio in a million stands at 1,703, which is low compared to other countries. The government aimed to increase the daily testing of 20,000 specimens, and currently, there are 110 laboratories across the country that are capable of rapid molecular testing using the RT-PCR method (Maharani, 2020; Berawi, 2020). However, this procedure will involve a significant amount of human resources and diagnostic testing supplies, including the flocked swabs. Due to the increased global demand, flocked swabs are in shortage and the price is skyrocketing (The Organization for Economic Co-operation and Development, 2020). To date, all of the flocked swabs available in the country are imported.

        In response to this issue, technology and university-industry collaborations need to be employed (Hanid et al., 2019; Berawi et al., 2020). In conjunction with industrial partners, our institution designed and manufactured a locally made nasopharyngeal swab called “Dacron Swab HS 19,” using food-grade resin material and flocked fiber. Series of tests for the mechanical properties have been conducted by the engineering team after developing the prototype. This study focuses on the clinical evaluation of the flocked swabs as the next step towards their mass production and distribution.

            Sterility test, RT-PCR compatibility test, and user-based survey test, comprising the swab stick performance (comfortability, smoothness, flexibility, durability, applicability, and breakpoint performance) and flocked-fiber tip performance (fiber adherence, thickness, symmetricity, and sample collection sufficiency), were conducted. We expected that these locally made flocked swabs would be clinically applicable for testing and diagnosing COVID-19 and mass producing and distributing them across the country. 

Conclusion

To mitigate the spread of the virus, an increase in the testing of COVID-19 is needed for this vastly populated country. However, the pandemic has caused an international shortage of nasopharyngeal flocked swabs. As a result, this has led to the innovation and development of locally made flocked swabs, which involves multidisciplinary teamwork and various industrial partners. This study shows that locally made flocked swabs are satisfactory and clinically applicable for testing and diagnosing COVID-19. Further improvement and refinement are part of a learning process in product development and this report encourages further increase in mass-production and distribution capacity of flocked swabs in response to the pandemic. Future studies comparing locally made and imported flocked swabs are warranted.

Acknowledgement

        Our industrial partners involved in this project: PT Chandra Asri Petrochemical Tbk., Dynapack Asia Pte Ltd, PT Ingress Malindo Venture, PT Langgeng Jaya Fiberindo, PT Sri Tita Medika, PT Indachi Prima, and PT Toyota Motor Manufacturing Indonesia.

References

Ahn, D.G., Shin, H.J., Kim, M.H., Lee, S., Kim, H.S., Myoung, J., Kim, B.T., Kim, S.J., 2020. Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel Coronavirus Disease 2019 (COVID-19). Journal of Microbiology and Biotechnology, Volume 30(3), pp. 313324

Ali, M., Han, S., Gunst, C.J., Lim, S., Luinstra, K., Smieja, M., 2015. Throat and Nasal Swabs for Molecular Detection of Respiratory Viruses in Acute Pharyngitis. Virology Journal, Volume 12, p. 178182

Berawi, M.A., 2020. Empowering Healthcare, Economic, and Social Resilience during Global Pandemic Covid-19. International Journal of Technology, Volume 11(3), p. 436–439

Berawi, M.A., Suwartha, N., Kusrini, E., Yuwono, A.H., Harwahyu, R., Setiawan, E.A., Yatmo, Y.A., Atmodiwirjo, P., Zagloel, Y.M., Suryanegara, M., Putra, N., Budiyanto, M.A., Whulanza, Y., 2020. Tackling the COVID-19 Pandemic: Managing the Cause, Spread, and Impact. International Journal of Technology, Volume 11(2), pp. 209214

Callahan, C.J., Lee, R., Zulauf, K.E., Tamburello, L., Smith, K.P., Previtera, J., Cheng, A., Green, A., Abdul Azim, A., Yano, A., Doraiswami, N., Kirby, J.E., Arnaout, R.A., 2020. Open Development and Clinical Validation of Multiple 3D-Printed Nasopharyngeal Collection Swabs: Rapid Resolution of a Critical COVID-19 Testing Bottleneck. Journal of Clinical Microbiology, Volume 58(8), pp. 110

Hanid, M., Mohamed, O., Othman, M., Danuri, M.S.M., Ye, K.M., Berawi, M.A., 2019. Critical Success Factors (CSFs) in University-Industry Collaboration (UIC) Projects in Research Universities. International Journal of Technology, Volume 10(4), pp. 667676

Holshue, M.L., DeBolt, C., Lindquist, S., Lofy, K.H., Wiesman, J., Bruce, H., Spitters, C., Ericson, K., Wilkerson, S., Tural, A., Diaz, G., Cohn, A., Fox, L., Patel, A., Gerber, S.I., Kim, L., Tong, S., Lu, X., Lindstrom, S., Pallansch, M.A., Weldon, W.C., Biggs, H.M., Uyeki, T.M., Pillai, S.K., 2020. First Case of 2019 Novel Coronavirus in the United States. The New England Journal of Medicine, Volume 382(10), pp. 929936

International Organization for Standardization (ISO), 2014. ISO 11133:2014(en). Microbiology of Food, Animal Feed and Water — Preparation, Production, Storage and Performance Testing of Culture Media. Available Online at https://www.iso.org/standard/53610.html, Accessed on June 26, 2020

Kementerian Kesehatan Republik Indonesia, 2020. Situasi Infeksi Emerging: Info COVID-19 (Current COVID-19 Situation in Indonesia). Available Online at https://covid19.kemkes.go.id/category/situasi-infeksi-emerging/info-corona-virus/#.XuepSi-7qfA, Accessed on August 20, 2020

Kojima, N., Turner, F., Slepnev, V., Bacelar, A., Deming, L., Kodeboyina, S., Klausner, J.D., 2020. Self-Collected Oral Fluid and Nasal Swabs Demonstrate Comparable Sensitivity to Clinician Collected Nasopharyngeal Swabs for Covid-19 Detection. medRxiv (The Preprint Server for Health Sciences), pp. 1–13

Maharani, T., 2020. Targetkan 20000 tes COVID-19 per hari pemerintah pastikan jumlah laboratorium cukup (Aiming for 20.000 COVID-19 Tests Daily, Indonesian’s Government Assure Laboratories Adequacy). Available Online at https://nasional.kompas.com/read/2020/06/05/17401691/targetkan-20000-tes-covid-19-per-hari-pemerintah-pastikan-jumlah-lab-cukup, Accessed on June 10, 2020

Moore, K.A., Lipsitch, M., Barry, J.M., Osterholm, M.T., 2020. COVID-19: The CIDRAP Viewpoint. The Center for Infectious Disease Research and Policy. Available Online at https://www.cidrap.umn.edu/sites/default/files/public/downloads/cidrap-covid19-viewpoint-part1_0.pdf, Accessed on June 26, 2020

National Institutes of Health, 2020. COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. Available Online at https://www.covid19treatmentguidelines.nih.gov/, Accessed on June 10, 2020

Parveen, S., Kaur, S., David, S.A.W., Kenney, J.L., McCormick, W.M., Gupta, R.K., 2011. Evaluation of Growth Based Rapid Microbiological Methods for Sterility Testing of Vaccines and Other Biological Products. Vaccine, Volume 29(45), pp. 80128023

Roser, M., Ritchie, H., Ortiz-Ospina, E., Hasell, J., 2020. Coronavirus Pandemic (COVID-19). Available Online at https://ourworldindata.org/coronavirus, Accessed on June 26, 2020

The Organization for Economic Co-operation and Development, 2020. Testing for COVID-10: A Way to Lift Confinement Restrictions. Available Online at https://read.oecd-ilibrary.org/view/?ref=129_129658-l62d7lr66u&title=Testing-for-COVID-19-A-way-to-lift-confinement-restrictions, Accessed on June 12, 2020

Tom, M.R., Mina, M.J., 2020. To Interpret the SARS-CoV-2 Test, Consider the Cycle Threshold Value. Clinical Infectious Diseases, pp. 1–8

World Health Organization, ?2020?. Clinical Management of COVID-19: Interim Guidance, 27 May 2020. Available Online at https://apps.who.int/iris/handle/10665/332196, Accessed on June 26, 2020

World Health Organization, ?2020?. Laboratory Testing Strategy Recommendations for COVID-19: Interim Guidance, 21 March 2020. Available Online at https://apps.who.int/iris/handle/10665/331509, Accessed on June 26, 2020

World Health Organization, 2012. Test for Sterility. Available Online at https://www.who.int/medicines/publications/pharmacopoeia/TestForSterility-RevGenMethod_QAS11-413FINALMarch2012.pdf, Accessed on June 26, 2020

Zhou, J., Bai, Z., Liu, X., Guo, Y., Jiang, N., Li, X., Zhang, X., Li, Z., Li, Y., Ma, Z., Zhao, J., 2020. Flocked Swab might be One Main Reason Causing the High False-Negative Rate in COVID-19 Screening----The Advantages of a Novel Silicone Swab. bioRxiv (The Preprint Server for Biology), pp. 1–15