Published at : 19 Jul 2021
Volume : IJtech
Vol 12, No 3 (2021)
DOI : https://doi.org/10.14716/ijtech.v12i3.4278
Dede Djuhana | Department of Physics, Faculty Mathematics and Natural Science (FMIPA), Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia |
Candra Kurniawan | 1.Department of Physics, Faculty Mathematics and Natural Science (FMIPA), Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia 2. Research Center for Physics, Indonesian Institute of Scien |
Dong-Hyun Kim | Department of Physics, Chungbuk National University, Cheongju 28644, South Korea |
Agus Tri Widodo | Department of Physics, Faculty Mathematics and Natural Science (FMIPA), Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia |
Critical Diameter; Domain Structure; Micromagnetic; Multi-Domain; Single Domain
The
technological advancement of magnetic storage media was enhanced by an improved
understanding of dynamic magnetization in ferromagnetic materials. Some
potential application research of magnetic recordings, such as magnetic
random-access memory (MRAM), magnetic logic, microwave oscillators, and
magnetic nanosensors, has grown extensively in recent years (Udhiarto et al., 2014; Sun et al., 2015; Joshi, 2016;
Bhatti et al., 2017; Sbiaa and Piramanayagam, 2017). Magnetic storage
technologies, such as granular magnetic recording media, have rapidly developed
over the last 20 years. The important
key of these technologies was understanding magnetization structure and reversal for individual grains or elements (Ali
et al., 2018; Mu et al., 2019).
Recently, investigation of
three-dimensional magnetic nanostructures has attracted much attention due to
fundamental interest in magnetic properties as well as possible magnetic device
applications (Manke
et al., 2010; Streubel et al., 2015; Nur Fitriana et al., 2017; Sanz-Hernández
et al., 2017; Suzuki et al., 2018; Fischer et al., 2020). In particular,
micromagnetic simulations for three-dimensional magnetic nanostructures have
been adopted to explain experimental results, in which the detailed domain
structures at various magnetic states can be visualized (Aharoni,
2001; Fidler et al., 2002; Evans et al., 2014; Vousden et al., 2016; Leliaert and
Mulkers, 2019). Micromagnetic simulation is a mezoscopic scale
modeling, which can be solved using a finite difference or finite element
discretization approach (Miltat
and Donahue, 2007; Schrefl et al., 2007; Haryanto et al., 2017). Numerous studies have
been reported that have investigated the domain structure in cube (Hertel
and Kronmüller, 1999; Hertel and Kronmüller, 2002; Lu and Leonard, 2002; Piao
et al., 2010), sphere (Boardman
et al., 2004; Kákay and Varga, 2005; Yani et al., 2018; Usov and Nesmeyanov,
2020), cylinder (Piao
et al., 2013; Fernandez-Roldan et al., 2019), and pyramidal shapes (Knittel
et al., 2010). Among these, the case of nanospheres has steadily
gained interest since it gives exciting features such as transitional domain
structure from single-domain (SD) to multi-domain (MD), the critical size
effect, and the possible magnetic vortex structure in spheres (Russier,
2009; Kurniawan et al., 2020). However, the ground
state condition of a spherical-shaped magnetic nanoparticle around the domain
structure transition with visual magnetization observation was rarely been
studied.
In
conclusion, we have systematically observed the transition of the domain
structure of Ni, Py, Fe, and Co sphere models using micromagnetic simulation at
ground-state conditions without an external magnetic field. The transition
domain structure from SD to MD was analyzed based on the magnetization energies,
namely the demagnetization and exchange energy. The MD is first recognized when
the demagnetization energy decreases while the exchange energy increases. A VW
structure is formed in the MD regime, and the core orientation of the VW
structure has two orientations, HAO and EAO. It is found that the HAO and EAO
of the VW structure relate to the crystal plane direction. The critical
diameter at the transition from SD to MD was also determined. Interestingly, the
simulation results show good agreement compared with the theoretical Kittel and
Brown equations. Therefore, an interpretation of the magnetization dynamic is an
important step in the material selection for magnetic granular-based storage.
This
work is fully supported by Hibah Penelitian Dasar Unggulan Perguruan Tinggi
(PDUPT) year 2020 from the Ministry of Research, Technology, and Higher Education
of the Republic of Indonesia with the contract number NKB-202/UN2.RST/HKP.05.00/2020.
We also thank DRPM Universitas Indonesia for facilitating this research.
Aharoni, A., 2001. Micromagnetics: Past, Present
and Future. Physica B: Condensed Matter, Volume 306(1–4), pp. 1–9
Ali, S.R., Naz, F., Akber, H., Naeem, M.,
Ali, S.I., Basit, S.A., Sarim, M., Qaseem, S., 2018. Effect of Particle Size Distribution
on Magnetic Behavior of Nanoparticles with Uniaxial Anisotropy. Chinese
Physics B, Volume 27(9), 097503-1–097503-5
Allenspach, R., 2007. Magnetic
Properties of Systems of Low Dimensions. Handbook of Magnetism and Advanced
Magnetic Materials, Kronmüller, H., Parkin, S. (Eds.), John Wiley & Sons,
Ltd, Chichester, UK
Betto, D., Coey, J.M.D., 2014. Vortex State
in Ferromagnetic Nanoparticles. Journal of Applied Physics, Volume 115(17),
17D138, https://doi.org/10.1063/1.4867597
Bhatti, S., Sbiaa, R., Hirohata, A., Ohno,
H., Fukami, S., Piramanayagam, S.N., 2017. Spintronics Based Random Access Memory:
A Review. Materials Today, Volume 20(9), pp. 530–548
Boardman, R.P., Fangohr, H., Cox, S.J.,
Goncharov, A.V., Zhukov, A.A., de Groot, P.A.J., 2004. Micromagnetic Simulation
of Ferromagnetic Part-Spherical Particles. Journal of Applied Physics, Volume
95(11), pp. 7037–7039
Brown, W.F., 1968. The Fundamental Theorem
of Fine?Ferromagnetic?Particle Theory. Journal of Applied Physics, Volume
39, pp. 993–994
Coey, J.M.D., 2007. Magnetism and
Magnetic Materials. Cambridge University Press
Donahue, M.J., 2012. Micromagnetic Investigation
of Periodic Cross-Tie/Vortex Wall Geometry. Advances in Condensed Matter
Physics, Volume 2012, pp. 1–8
Donahue, M.J., McMichael, R.D., 2007.
Micromagnetics on Curved Geometries using Rectangular Cells: Error Correction
and Analysis. IEEE Transactions on Magnetics, Volume 43(6), pp. 2878–2880
Donahue, M.J., Porter, D.G., 1999. OOMMF
User’s Guide, Version 1.0, Interagency Report NISTIR 6376. National
Institute of Standards and Technology, Gaithersburg, MD
Evans, R.F.L., Fan, W.J., Chureemart, P.,
Ostler, T.A., Ellis, M.O.A., Chantrell, R.W., 2014. Atomistic Spin Model Simulations of
Magnetic Nanomaterials. Journal of Physics: Condensed Matter, Volume 26(10),
pp. 1–23
Fangohr, H., 2009. OVF2VTK: Tool for Conversion
of OOMMF to VTK Files [WWW Document]. Available Online at https://fangohr.github.io/software/ovf2vtk/index.html
Fernandez-Roldan, J.A., De Riz, A., Trapp,
B., Thirion, C., Vazquez, M., Toussaint, J.-C., Fruchart, O., Gusakova, D.,
2019. Modeling Magnetic-Field-Induced Domain Wall Propagation in Modulated-Diameter
Cylindrical Nanowires. Scientific Reports, Volume 9(5130), pp. 1–12
Fidler, J., Schrefl, T., Tsiantos, V.D.,
Scholz, W., Suess, D., 2002. Micromagnetic Simulation of the Magnetic Switching
Behaviour of Mesoscopic and Nanoscopic Structures. Computational Materials
Science, Volume 24(1-2), pp. 163–174
Fischer, P., Sanz-Hernández, D., Streubel,
R., Fernández-Pacheco, A., 2020. Launching a New Dimension with 3D Magnetic Nanostructures.
APL Materials, Volume 8, pp. 010701-1
– 010701-12
Getzlaff, M., 2008. Fundamentals of Magnetism.
New York: Springer Science & Business Media
Gilbert, T.L., 2004. Classics in Magnetics:
A Phenomenological Theory of Damping in Ferromagnetic Materials. IEEE
Transactions on Magnetics, Volume 40(6), pp. 3443–3449
Guimarães, A.P., 2009. Principles of
Nanomagnetism, NanoScience and Technology. Berlin Heidelberg: Springer
Haryanto, Y., Gan, B.S., Maryoto, A., 2017.
Wire Rope Flexural Bonded Strengthening System on RC-Beams: A Finite Element
Simulation. International Journal of Technology, Volume 8(1), pp. 132–144
Hertel, R., Kronmüller, H., 2002. Finite Element
Calculations on the Single-Domain Limit of a Ferromagnetic Cube: A Solution to µMAG
Standard Problem No. 3. Journal of Magnetism and Magnetic Materials, Volume
238(2-3), pp. 185–199
Hertel, R., Kronmüller, H., 1999.
Computation of the Magnetic Domain Structure in Bulk Permalloy. Physical
Review B, Volume 60(10), pp. 7366–7378
Joshi, V.K., 2016. Spintronics: A Contemporary
Review of Emerging Electronics Devices. Engineering Science and Technology,
an International Journal, Volume 19(3), pp. 1503–1513
Kafrouni, L., Savadogo, O., 2016. Recent Progress
on Magnetic Nanoparticles for Magnetic Hyperthermia. Progress in
Biomaterials, Volume 5, pp. 147–160
Kákay, A., Varga, L.K., 2005. Monodomain Critical
Radius for Soft-Magnetic Fine Particles. Journal of Applied Physics, Volume
97, 083901, https://doi.org/10.1063/1.1844612
Kittel, C., 1949. Physical Theory of
Ferromagnetic Domains. Reviews of Modern Physics, Volume 21, pp. 541–583
Knittel, A., Franchin, M., Fischbacher, T.,
Nasirpouri, F., Bending, S.J., Fangohr, H., 2010. Micromagnetic Studies of Three-Dimensional
Pyramidal Shell Structures. New Journal of Physics, Volume 12, pp. 1–23
Kurniawan, C., Widodo, A.T., Kim, D.H.,
Djuhana, D., 2020. Micromagnetic Investigation of Magnetization Reversal in
Sphere-Shaped Ferromagnetic Nanoparticle. Key Engineering Materials, Volume
855, pp. 237–242
Leliaert, J., Mulkers, J., 2019. Tomorrow’s
Micromagnetic Simulations. Journal of Applied Physics, Volume 125, pp. 180901-1– 180901-9
López-Urías, F., Torres-Heredia, J.J.,
Muñoz-Sandoval, E., 2005. Magnetization Patterns Simulations of Fe, Ni, Co, and
Permalloy Individual Nanomagnets. Journal of Magnetism and Magnetic
Materials, Volume 294(2), pp. e7–e12
Lu, M., Leonard, P.J., 2002. Micromagnetic Simulation
of Magnetization Reversal Processes in Ferromagnetic Cubes from Quasisaturation
State. Journal of Physics: Condensed Matter, Volume 14, pp. 8089–8101
Manke, I., Kardjilov, N., Schäfer, R.,
Hilger, A., Strobl, M., Dawson, M., Grünzweig, C., Behr, G., Hentschel, M.,
David, C., Kupsch, A., Lange, A., Banhart, J., 2010. Three-Dimensional Imaging
of Magnetic Domains. Nature Communications, Volume 1(125), pp. 1–6
Miltat, J.E., Donahue, M.J., 2007. Numerical
Micromagnetics: Finite Difference Methods. Handbook of Magnetism and
Advanced Magnetic Materials, Helmut Kronmuller and Stuart Parkin (eds.), Volume
2: Micromagnetism, John Wiley & Sons, Ltd., pp. 1–23
Mu, C., Jing, J., Dong, J., Wang, W., Xu,
J., Nie, A., Xiang, J., Wen, F., Liu, Z., 2019. Static and Dynamic Characteristics
of Magnetism in Permalloy Oval Nanoring by Micromagnetic Simulation. Journal
of Magnetism and Magnetic Materials, Volume 474, pp. 301–304
Nur Fitriana, K., Hafizah, M.A.E., Manaf,
A., 2017. Synthesis and Magnetic Characterization of Mn?Ti Substituted SrO.6Fe2?xMnx/2Tix/2O3
(x = 0.0–1.0) Nanoparticles by Combined Destruction Process. International
Journal of Technology., Volume 8(4), pp. 644–650
Piao, H.-G., Djuhana, D., Shim, J.-H., Lee,
S.-H., Jun, S.-H., Oh, S.K., Yu, S.-C., Kim, D.-H., 2010. Three-Dimensional
Spin Configuration of Ferromagnetic Nanocubes. Journal of Nanoscience and
Nanotechnology, Volume 10(11), pp. 7212–7216
Piao, H.-G., Shim, J.-H., Djuhana, D., Kim,
D.-H., 2013. Intrinsic Pinning Behavior and Propagation Onset of Three-Dimensional
Bloch-Point Domain Wall in a Cylindrical Ferromagnetic Nanowire. Applied
Physics Letters, Volume 102(11), 112405, https://doi.org/10.1063/1.4794823
Russier, V., 2009. Spherical Magnetic Nanoparticles:
Magnetic Structure and Interparticle Interaction. Journal of Applied Physics,
Volume 105(7), 073915, https://doi.org/10.1063/1.3093966
Sanz-Hernández, D., Hamans, R.F., Liao,
J.-W., Welbourne, A., Lavrijsen, R., Fernández-Pacheco, A., 2017. Fabrication,
Detection, and Operation of a Three-Dimensional Nanomagnetic Conduit. ACS
Nano, Volume 11(11), pp. 11066–11073
Sbiaa, R., Piramanayagam, S.N., 2017.
Recent Developments in Spin Transfer Torque MRAM. Physica Status Solidi RRL
- Rapid Research Letters, Volume 11(12), 1700163, https://doi.org/10.1002/pssr.201700163
Schrefl, T., Hrkac, G., Bance, S., Suess,
D., Ertl, O., Fidler, J., 2007. Numerical Methods in Micromagnetics (Finite
Element Method). In: Handbook of Magnetism and Advanced Magnetic Materials,
Kronmüller, H., Parkin, S. (Eds.), John Wiley & Sons, Ltd, Chichester, UK,
p. hmm203
Skomski, R., 2001. Micromagnetic Spin
Structure. In: Spin Electronics, Lecture Notes in Physics, Ziese, M.,
Thornton, M.J. (Eds.), Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
204–231
Skomski, R., 2003. Nanomagnetics. Journal
of Physics: Condensed Matter, Volume 15(20), pp. R841–R896
Streubel, R., Kronast, F., Fischer, P.,
Parkinson, D., Schmidt, O.G., Makarov, D., 2015. Retrieving Spin Textures on Curved
Magnetic Thin Films with Full-Field Soft X-ray Microscopies. Nature
Communications, Volume 6(7612), pp. 1–11
Sun, L., Wong, P.K.J., Zhang, W., Zhai, Y.,
Niu, D.X., Xu, Y.B., Zou, X., Zhai, H.R., 2015. Micromagnetic Simulation on the
Interelement Coupling of High-Density Patterned Film. IEEE Transactions on
Magnetics, Volume 51(11), pp. 1–4
Suzuki, M., Kim, K.-J., Kim, S., Yoshikawa,
H., Tono, T., Yamada, K.T., Taniguchi, T., Mizuno, H., Oda, K., Ishibashi, M.,
Hirata, Y., Li, T., Tsukamoto, A., Chiba, D., Ono, T., 2018. Three-Dimensional Visualization
of Magnetic Domain Structure with Strong Uniaxial Anisotropy Via Scanning Hard
X-ray Microtomography. Applied Physics Express, Volume 11(3), pp. 036601-1–036601-4
Udhiarto, A., Tamam, M.A., Nuryadi, R.,
Hartanto, D., 2014. Design and Simulation of Two Bits Single-Electron Logic
Circuit using Double Quantum Dot Single Electron Transistor. International
Journal of Technology, Volume 5(2), pp. 152–158
Usov, N.A., Nesmeyanov, M.S., 2020. Multi-Domain
Structures in Spheroidal Co Nanoparticles. Scientific Reports, Volume 10(10173),
pp. 1–9
Vaz, C.A.F., Bland, J.A.C., Lauhoff, G.,
2008. Magnetism in Ultrathin Film Structures. Reports on Progress in Physics,
Volume 71(5), pp. 1–78
Vousden, M., Bisotti, M.-A., Albert, M.,
Fangohr, H., 2016. Virtual Micromagnetics: A Framework for Accessible and
Reproducible Micromagnetic Simulation. Journal of Open Research Software,
Volume 4(1), pp. 1–7
Yani,
A., Kurniawan, C., Djuhana, D., 2018. Investigation of the Ground State Domain Structure
Transition on Magnetite (Fe3O4). In: Proceedings of
the 3rd International Symposium on Current Progress in Mathematics and
Sciences 2017 (ISCPMS2017), Bali, Indonesia, p. 020020.