• International Journal of Technology (IJTech)
  • Vol 12, No 1 (2021)

Numerical Investigation into the Pressure and Flow Velocity Distributions of a Slender-Body Catamaran Due to Viscous Interference Effects

Numerical Investigation into the Pressure and Flow Velocity Distributions of a Slender-Body Catamaran Due to Viscous Interference Effects

Title: Numerical Investigation into the Pressure and Flow Velocity Distributions of a Slender-Body Catamaran Due to Viscous Interference Effects
I Ketut Aria Pria Utama, Wasis Dwi Aryawan, Ahmad Nasirudin, Sutiyo, Yanuar

Corresponding email:


Cite this article as:
Utama, I.K.A.P., Aryawan, W.D., Nasirudin, A., Sutiyo, Yanuar, 2021. Numerical Investigation into the Pressure and Flow Velocity Distributions of a Slender-Body Catamaran Due to Viscous Interference Effects. International Journal of Technology. Volume 12(1), pp. 149-162

815
Downloads
I Ketut Aria Pria Utama 1. Department of Naval Architecture, Institute of Technology Sepuluh Nopember, Surabaya 60111, Indonesia 2. Research Center for Marine-Earth Science and Technology, Institute of Technology Sepuluh No
Wasis Dwi Aryawan Department of Naval Architecture, Institute of Technology Sepuluh Nopember, Surabaya 60111, Indonesia
Ahmad Nasirudin 1. Department of Naval Architecture, Institute of Technology Sepuluh Nopember, Surabaya 60111, Indonesia 2. Department of Systems and Naval Mechatronic Engineering, National Cheng Kung University, Ta
Sutiyo Department of Naval Architecture, University of Hang Tuah, Surabaya 60111, Indonesia
Yanuar Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
Email to Corresponding Author

Abstract
Numerical Investigation into the Pressure and Flow Velocity Distributions of a Slender-Body Catamaran Due to Viscous Interference Effects

A computational fluid dynamics investigation was carried out on a slender body catamaran to determine the effect of pressure and flow velocity changes for varied hull separations. The investigation was conducted using an NPL 4a model with a slenderness (length to breadth) ratio of about 11 together with the use of a commercial code (CFX) with hull separations of S/L = 0.3 and 0.4 along with a variation in Reynolds numbers of 2.86×105, 3.43×105, 4.01×105, and 4.44×105. Pressure and flow velocity around the hull were measured to obtain a fluid effect attributed to the influence of catamaran hull interference. A computational fluid dynamics investigation was carried out with the same configurations as those in the experimental tests. The overall results were in good agreement, with the order of discrepancy at about 1.76%; the computational fluid dynamics results were consistently lower than the experimental ones. Both tests demonstrated a viscous interaction between the hulls and, thus, the form factors for the demihull and catamaran were properly derived: the form factor for the demihull (1+k) was 1.254 and for the catamaran (1+?k) was 1.420, indicating interaction effects of about 13.2%. The form factor for the catamaran was consistently higher than the demihull, suggesting some viscous interference between the hulls. The effect of catamaran hull interference variation can be recognized through the velocity augmentation ratio (?), pressure change ratio (?), and the viscous interference factor (?). In addition, the ? value is very helpful for finding out the interference of the hull on a catamaran when sophisticated experimental and numerical tools are not available.

Catamaran; CFD; Flow velocity; Pressure distribution; Viscous interference factor

Introduction

Multihull ships have progressively received considerable attention. One of the most popular is the catamaran (Utama, 1999). Catamarans have a unique hydrodynamics phenomenon known as viscous and wave interactions which occur between the demihull of the catamaran. The technique to conduct and analyze the viscous resistance of a catamaran can be done using the computational fluid dynamics (CFD) method on a reflex model. In this case, the free surface is treated, allowing the isolation of the viscous resistance by omitting any influences from surface waves. The use of reflex models in a CFD simulation, therefore, provides an approximate means of directly measuring the total viscous resistance of the model without wave resistance.

In the last 50 years, the development of catamaran theory has been proposed by many researchers to explain the resistance of catamarans. The reflex model was a technique pioneered by Joubert and Matheson (1970), where the resistance of the hull was measured in a wind tunnel. Utama (1999) conducted a detailed experimental investigation in a low-speed wind tunnel on a single ellipsoid (as a reflex model) and a pair of ellipsoids nearby representing a catamaran. Theoretical, numerical, and experimental investigations have been carried out on multihull vessels and further research has been conducted by Zaghi et al. (2011).

An increasing number of researchers are calculating ship resistance using CFD. Broglia et al. (2014) completed a study on catamarans with Froude numbers between 0.3 and 0.5 which showed that the configuration of the narrow hull distance between catamarans has a more significant interference effect. Numerical computation to illustrate the hydrodynamic factors that influence ship resistance using a FLUENT code has been investigated by Deng et al. (2011). Jamaluddin et al. (2013) conducted experimental and numerical investigations to analyze the components of resistance and interactions between hulls in catamarans, and Samuel et al. (2015) studied the selection of optimal catamaran hulls on traditional fishing vessels.

Previous studies have discussed a lot of catamaran hull interference, but not many have conducted detailed research related to interference due to viscous form factors. Broglia et al. (2019) have been conducting research to improve the capabilities of state-of-the-art CFD tools in the prediction of the flow-field around a multihull catamaran.  Viscous resistance represents an integral part of the total resistance of a catamaran in which intermediate Froude Number value interference effects are dominant (Farkas et al., 2017). A potential-flow method was carried out to determine the lift force of single-deadrise hulls and catamaran configurations in which hydrodynamics pressure was more pronounced between two catamaran hulls (Bari and Matveev, 2017). Iqbal and Samuel, (2017) have conducted research catamaran hull form show that the fluid form that surrounds the ship hull influences ship resistance. Mittendorf and Papanikolaou (2020)  investigated catamaran resistance and also found an increase in total resistance due to viscous interference. Therefore, the CFD technique could be used to optimize the hull of a catamaran (Miao et al., 2020; Yongxing and Kim, 2020).

The study objectives were to determine the viscous interference due to pressure and flow velocity changes between the catamaran hulls by using a reflex model and to derive viscous form factors (?) in the catamaran models using CFD. The results were validated with an experimental investigation which was carried out in a wind tunnel on a symmetrical catamaran using a reflex model of NPL4a by Jamaluddin et al. (2013).

Conclusion

The effects of two variations of hull separations for a catamaran, which were investigated by CFD analysis, were compared with a wind tunnel experiment to validate the results. Numerical simulation and experiment (wind tunnel) results show a relatively small difference in the value of flow and pressure components, which is 1.76% on average. This result shows consistency and is entirely accurate. The difference in viscous resistance is about 13.2%, where the catamaran resistance is greater than that of the demihull and is attributed to the interaction between the hulls of the catamaran. The numerical simulation clearly illustrates the change in flow at the inner hulls which causes the result that viscous resistance at S/L = 0.3 is higher than that at S/L = 0.4. Also, it applies to the pressure acting on the model catamaran; the viscous pressure increases as the S/L decreases. The effect of the catamaran hull interference variation can be recognized through the velocity augmentation ratio (?), pressure change ratio (?), and viscous interference factor (?). The influence of interference resistance between two ship hulls causes the symmetrical flow of water around the demihull to be asymmetrical due to high pressure (which relates to s) and flow velocity (associated with f) which occurs around the hull and is relatively unequal to the hull centerline. In addition, the ? value is very helpful for finding out the hull interference on a catamaran when sophisticated experimental and numerical tools are not available.

Acknowledgement

The authors wish to thank the Ministry of Research, Technology, and Higher Education (Kemristekdikti) and the Institut Teknologi Sepuluh Nopember (ITS) for funding the current work under a scheme called the World-Class Professor (WCP) Program with the contract number T/42/D2.3/KK.04.05/2019.

References

Anderson, J.D., 1995. Computational Fluid Dynamics: The Basics with Applications, Editions: Mechanical Engineering. McGraw-Hill, New York, USA. pp. 526532

ANSYS, 2020. ANSYS CFX-Solver Theory Guide. Ansys Inc, Canonsburg, PA, USA.

Armstrong, T., 2003. The Effect of Demihull Separation on the Frictional Resistance of Catamarans, In: The 7th International Conference on Fast Sea Transportation (FAST), 7th-10th October 2003. Ischia, Italy

Bardina, J.E., Huang, P.G., Coakley, T.J., 1997. Turbulence Modeling Validation, Testing, and Development. Nasa Technical, Memorandum

Bari, G.S., Matveev, K.I., 2017. Hydrodynamics of Single-Deadrise Hulls and Their Catamaran Configurations. International Journal of Naval Architecture and Ocean Engineering, Volumw 9(3), pp. 305–314

Broglia, R., Jacob, B., Zaghi, S., Stern, F., Olivieri, A., 2014. Experimental Investigation of Interference Effects for High-Speed Catamarans. Ocean Engineering, Volume 76, pp. 75–85

Broglia, R., Zaghi, S., Campana, E.F., Dogan, T., Sadat-Hosseini, H., Stern, F., Queutey, P., Visonneau, M., Milanov, E., 2019. Assessment of Computational Fluid Dynamics Capabilities for the Prediction of Three-Dimensional Separated Flows: The Delft 372 Catamaran in Static Drift Conditions. Journal of Fluids Engineering, Volume 41(9), pp. 1–28

Deng, R., Huang, D.B., Yu, L., Cheng, X.K., Liang, H.G., 2011. Research on Factors of a Flow Fieldaffecting Catamaran Resistance Calculation. Harbin Gongcheng Daxue Xuebao/Journal Harbin Engineering University. Volume 32(2), pp. 141–147

Elkafas, A.G., Elgohary, M.M., Zeid, A.E., 2019. Numerical Study on the Hydrodynamic Drag Force of a Container Ship Model. Alexandria Engineering Journal, Volume 58(3), pp. 849–859

Farkas, A., Degiuli, N., Marti?, I., 2017. Numerical Investigation into the Interaction of Resistance Components for a Series 60 Catamaran. Ocean Engineering, Volume 146, pp. 151–169

Ferziger, J.H., Peric, M., Leonard, A., 1997. Computational Methods for Fluid Dynamics. Phys. Today.

Ford, C.L., Winroth, P.M., 2019. On the Scaling and Topology of Confined Bluff-Body Flows. Journal of Fluid Mechanic, Volume 876, pp. 1018–1040

Insel, M., Molland, A.F., 1992. An Investigation Into Resistance Components of High Speed Displacement Catamarans. RINA. UK., Volume 134, pp. 1–20

Iqbal, M., Samuel, 2017. Traditional Catamaran Hull Form Configurations that Reduce Total Resistance. International Journal of Technology, Volume 8(1), pp. 85–93

ITTC, 2014. Practical Guidelines for Ship CFD Applications. In: ITTC – Recomm. Proceeding Guidel. ITTC 7.5–03 –02, 1-9. Denmark.

ITTC, 2002. ITTC – Recommended Procedures Testing and Extrapolation Methods Resistance Test. In: International Towing Tank Conference

Jamaluddin, A., Utama, I., Widodo, B., Molland, A., 2013. Experimental and Numerical Study of the Resistance Component Interactions of Catamarans. In: Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment. Volume 227, pp. 51–60

Joubert, P.N., Matheson, N., 1970. Wind Tunnel Tests of Two Lucy Ashton Relfex Geosims. Journal of Ship Research, Volume 14(04), pp. 241–276

Menter, F.R., Esch, T., 2001. Elements of Industrial Heat Transfer Predictions. 16th Brazilian Congress of Mechanical Engineering , Energy and Power Engineering, Volume 9(13), pp. 829–842

Miao, A., Zhao, M., Wan, D., 2020. CFD-Based Multi-Objective Optimisation of S60 Catamaran Considering Demihull Shape and Separation. Applied Ocean Research, Volume 97, doi.org/10.1016/j.apor.2020.102071

Mittendorf, M., Papanikolaou, A.D., 2020. Hydrodynamic Hull Form Optimization of Fast Catamarans using Surrogate Models. Ship Technology Research, Volume 68(1), doi.org/10.1080/09377255.2020.1802165

Molland, A.F., Turnock, S.R., Hudson, D.A., 2017. Ship Resistance and Propulsion. Practical Estimation of Ship Propulsive Power. Second Edition, Cambridge University Press

Molland, A.F., Wellicome, J.F., Couser, P.R., 1996. Resistance Experiments on a Systematic Series of High Speed Catamaran Forms: Variation of Length-Displacement Ratio and Breadth-Draught Ratio. Trans. RINA. UK.

Samuel, Iqbal, M., Utama, I.K.A.P., 2015. An Investigation into the Resistance Components of Converting a Traditional Monohull Fishing Vessel into Catamaran Form. International Journal of Technology, Volume 6(3), pp. 432–441

Tu, J., Yeoh, G.-H., Liu, C., 2018. Chapter 4-CFD Mesh Generation: A Practical Guideline, in: Computational Fluid Dynamics. Elsevier, UK, pp. 125–154

Utama, I.K.A., 1999. Investigation of the Viscous Resistance Components of Catamaran Forms. Dissertation. University of Southampton,UK.

Yanuar., Gunawan., Utomo, A.S.A., Luthfi, M.N., Baezal, M.A.B., Majid, F.R.S., Chairunisa, Z., 2020. Numerical and Experimental Analysis of Total Hull Resistance on Floating Catamaran Pontoon for N219 Seaplanes based on Biomimetics Design with Clearance Configuration. International Journal of Technology, Volume 11(7), pp. 1397–1405

Yongxing, Z., Kim, D.-J., 2020. Optimization Approach for a Catamaran Hull using CAESES and STAR-CCM+. Journal of Ocean Engineering and Technology, Volume 34(4), pp. 272–276

Zaghi, S., Broglia, R., Di Mascio, A., 2011. Analysis of the Interference Effects for High-Speed Catamarans by Model Tests and Numerical Simulations. Ocean Engineering, Volume 38(17-18), pp. 2110–2122