Published at : 16 Oct 2020
Volume : IJtech
Vol 11, No 4 (2020)
DOI : https://doi.org/10.14716/ijtech.v11i4.3955
Yusraini Dian Inayati Siregar | 1. Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia 2. Department of Chemistry, Faculty of Science and Technology, |
Endang Saepudin | Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia |
Yuni Krisyuningsih Krisnandi | Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia |
Sorghum stems, an
agricultural biomass waste, can be used as a raw-material carbon source for
platform chemicals, such as levulinic acid. Levulinic acid can be produced with
high percentage yields using delignified sorghum stems as starting materials.
The purpose of this study was to evaluate manganese-based catalysts (Mn2+
and Mn3O4) as Fenton-like reagents for the production of
levulinic acid from sorghum stems. A mixture of finely powdered delignified
sorghum stems (containing 76.66% cellulose) dispersed in a mixture of
phosphoric acid (40%), H2O2 (30%), and either 2% Mn2+
or 2% Mn3O4 as a catalyst in a one-pot mini reactor was
observed at 130°C for 10 h. The yield of the conversion products was
quantitatively analyzed for levulinic acid using high-performance liquid
chromatography. The reaction using the Mn3O4 catalyst
yielded a higher percentage of levulinic acid (26.57%) than the Mn2+
catalyst (25.59 %) reaction after 8 hours. This study points to the opportunity
of the one-pot synthesis of levulinic acid using renewable biomass waste
resources.
Cellulose; Delignification; Fenton-like system; Levulinic Acid; Sorghum
Sorghum bicolor biomass can be used as a raw-material carbon source for industrial chemicals (platform chemicals), such as levulinic acid. Levulinic acid is one of the top ten US DOE 2004 chemicals derived from carbohydrates (Bozell et al., 2000). Levulinic acid is a short-chain fatty acid compound containing ketone and carbonyl functional groups, which makes it a potential source for the synthesis of various chemical compounds, such as polymers, resins, plastics, textiles, solvents, herbicides, and fuel additives (Rackemann and Doherty, 2011). As well as being able to be converted into chemicals with high economic value, levulinic acid is also a non-toxic material with an LD50 of 1,850 mg/kg. Levulinic acid can be obtained by mixing biomass with acids and heating at high temperatures (>100°C) to produce sugar, which is then converted into intermediary hydroxyl methyl furfural to produce levulinic and formic acid (Girisuta, 2007). Kang et al. (2018) reported heating between 140°C and 200°C for biomass hydrolysis reactions originating from biomass feedstocks, such as sugar cane bagasse, rice husks, sorghum flour, wheat straw, and corn stalks. However, before hydrolysis, the biomass must be pretreated to make the conversion into levulinic acid easier. Pretreatment occurs in three ways: chemically (Harahap et al., 2019; Hermansyah et al., 2019), physically (Ruksathamcharoen et al., 2018), and biologically (Hossain et al., 2017). Biomass is usually delignified to weaken the binding between the lignin and the cellulose to remove the lignin from the substrate (Krisnandi et al., 2019). Delignification using 10% NaOH is the optimal concentration for the delignification process, and this condition was used in this study.
The conversion reaction of biomass to levulinic acid usually uses either a homogeneous catalyst with acids (Girisuta et al., 2007; Van et al., 2011) or a heterogeneous catalyst (Ya’aini et al., 2013; Ramli and Amin, 2016). In the current study, semi-heterogeneous manganese catalysts (Mn2+ and Mn3O4) were used in a Fenton-like system to produce levulinic acid from delignified sorghum stems heated to only 130°C. Fenton systems that use catalysts, including the homogeneous catalysts of iron (Fe2+ and Fe3+) (Eckenfelder, 2000), are called Fenton-like systems. Fenton’s reagent can produce hydroxyl radicals, which with a transition metal have a high H2O2 oxidation capability, making it suitable for difficult to degrade organic materials (Catalkaya and Kargi, 2009). Fenton oxidation using mangan not only degrades cellulose and but also functions in conversion to levulinic acid (Chen et al., 2011a; Chen et al., 2011b), which is why the current study used a manganese base catalyst. The purpose of this study was to demonstrate the conversion of delignified stem sorghum, a lignocellulosic biomass waste, into high economic value levulinic acid using a semi-heterogenous manganese catalyst via a Fenton-like system with a low reaction temperature.
Levulinic
acid was successfully produced by the conversion reaction of delignified
sorghum stems using manganese-based catalysts that produced HO• radicals via a Fenton-like mechanism. The reaction result
of sorghum stem conversion using the Mn3O4 catalyst gave
a higher percentage yield of levulinic acid due to the presence of both Mn2+
and Mn3+. These results point to an opportunity for the one-pot
synthesis of levulinic acid from renewable biomass waste resources.
This research was funded by The Indonesia Endowment Fund for Education,
Ministry of Finance, Republik Indonesia (LPDP Kementerian Keuangan RI), 2018
for a PhD student.
Filename | Description |
---|---|
R1-CE-3955-20200319144512.pdf | --- |
Bozell, J.J., Moens,
L., Elliott, D.C., Wang, Y., Neuenscwander, G.G., Fitzpatrick, S.W., Jarnefeld,
J.L., 2000. Production of Levulinic Acid and Use as a Platform Chemical for
Derived Products. Resources, Conservation
and Recycling, Volume 28(3-4), pp. 227–239
Catalkaya, E.C.,
Kargi, F., 2009. Degradation and Mineralization of Simazine in Aqueous Solution
by Ozone/Hydrogen Peroxide Advanced Oxidation. Journal of Environmental Engineering, Volume 135(12), pp. 1357–1364
Chen, Y., Li, G., Yang, F., Zhang, S.M., 2011a.
Mn/ZSM-5 Participated in Degradation of Cellulose. Advanced Materials
Research, Volume 236–238, pp. 104–107
Chen, Y., Li, G., Yang, F., Zhang, S.M., 2011b.
Mn/ZSM-5 Participation in the Degradation of Cellulose under Phosphoric Acid
Media. Polymer Degradation and Stability, Volume 96(5), pp.
863–869
Dence, C.W., 1992. The
Determination of Lignin. In Methodes
in Lignin Chemistry, Springer-Verlag, Berlin, pp. 33–61
Dhaouadi, H.,
Ghodbane, O., Hosni, F., Touati, F., 2012. Mn3O4
Nanoparticles: Synthesis, Characterization, and Dielectric Properties. ISRN Spectroscopy, Volume 2012, pp. 1–8
Eckenfelder, W.W.,
Jr., 2000. Sludge Handling and Disposal. In: Industrial Water Pollution
Control, Eckenfelder, W.W., Jr., (ed), The McGraw-Hill Companies, Inc., New York, USA, pp. 484
Girisuta, B., 2007. Levulinic Acid from
Lignocellulosic Biomass. Master’s Thesis, Graduate Program, University of
Groningen, Groningen, Netherlands
Girisuta, B.,
Janssen, L.P.B.M., Heeres, H.J., Morone, A., Apte, M., Pandey, R.A., Ahmad, S.,
2007. Kinetic Study on the Acid-Catalysed Hydrolysis of Cellulose to Levulinic
Acid. Renewable and Sustainable Energy
Reviews, Volume 51, pp. 986–997
Harahap, A.F.P.,
Rahman, A.A., Sadrina, I.N., Gozan, I., 2019. Optimization of Pretreatment
Condition for Microwave-Assisted Alkaline Delignification of Empty Fruit Bunch
by Response Surface Methodology. International Journal of Technology,
Volume 10(8), pp. 1479–1487
Hermansyah, H.,
Putri, D.N., Prasetyanto, A., Chairuddin, Z.B., Perdani, M.S., Sahlan, M.,
Yohda, M., 2019. Delignification of Oil Palm Fruit Bunch using Paracetic Acid
and Alkaline Peroxide Combine with the Ultrasound. International Journal of Technology, Volume 10(8), pp. 1523–1532
Hossain, N., Zaini, J.H., Mahlia,
T.M.I., 2017. A Review of Bioethanol Production from Plan Based-waste Biomass
by Yeast Fermentation. International
Journal of Technology, Volume 8(1), pp. 5–18
Kang, S., Fu, J., Zhang, G., 2018. From Lignocellulosic
Biomass to Levulinic Acid: A Review on Acid-Catalyzed Hydrolysis. Renewable
and Sustainable Energy Reviews, Volume 94, pp. 340–362
Kim, T.H., Kim, J.S., Sunwoo, C., Lee,
Y.Y., 2003. Pretreatment of Corn Stover by Aqueous Ammonia. Bioresource Technology, Volume 90(1),
pp. 39–47
Krisnandi, Y.K., Nurani, D.A., Agnes, A.,
Pertiwi, R., Antra, N.F., Anggraeni, A.R., Howe, R.F., 2019. Hierarchical
MnOx/ZSM-5 as Heterogeneous Catalysts in Conversion of Delignified Rice Husk to
Levulinic Acid. Indonesian Journal of
Chemistry, Volume 19(1), pp. 115–123
Rackemann, D.W., Doherty, W.O., 2011. The Conversion
of Lignocellulosics to Levulinic Acid. Biofuels,
Bioproducts and Biorefining, Volume 5(2), pp. 198–214
Ramli, N.A.S., Amin, N.A.S.,
2016. Kinetic Study of Glucose Conversion to Levulinic Acid Over Fe/HY Zeolite
Catalyst. Chemical Engineering Journal, Volume 283, pp.150–159
Ruksathamcharoen, S.,
Ajiwibowo, M.W., Chuenyam, T., Surjosatyo, A., Yoshikawa, K., 2018. Effect of
Hydrothermal Treatment on Grindability and Fuel Characteristics of Empty Fruit
Bunch Deriver Hydrochar. International Journal of Technology, Volume 9(6), pp. 1246–1255
Segal, L., Creely, J.J., Martin, A.E.,
Conrad, C.M., 1959. An Empirical Method for Estimating the Degree of
Crystallinity of Native Cellulose using the X-Ray Diffractometer. Textile Research Journal, Volume 29(10),
pp. 786–794
Tholkappiyan, R., Naveen, A.N., Vishista, K., Hamed,
F., 2018. Investigation on the Electrochemical
Performance of Hausmannite Mn3O4 Nanoparticles by Ultrasonic Irradiation Assisted
Co-Precipitation Method for Supercapacitor Electrodes . Journal of Taibah
University for Science, Volume 12(5), pp. 669–677
Ullah, A.K.M.A., Kibria, A.K.M.F., Akter, M., Khan,
M.N.I., Maksud, M.A., Jahan, R.A., Firoz, S.H., 2017. Synthesis of Mn3O4 Nanoparticles via a Facile Gel Formation Route and Study
of Their Phase and Structural Transformation with Distinct Surface Morphology Upon
Heat Treatment. Journal of Saudi Chemical Society, Volume 21(7), pp.
830–836
Van De Vyver, S., Thomas, J., Geboers, J.,
Keyzer, S., Smet, M., Dehaen, W., Sels, B.F., 2011. Catalytic Production of
Levulinic Acid from Cellulose and Other Biomass-Derived Carbohydrates with
Sulfonated Hyperbranched Poly(Arylene Oxindole)s. Energy and Environmental Science, Volume 4(9), pp. 3601–3610
Wang, L., Zhang, Z.,
Yin, C., Shan, Z., Xiao, F.S., 2010. Hierarchical Mesoporous Zeolites with
Controllable Mesoporosity Templated from Cationic Polymers. Microporous and Mesoporous Materials,
Volume 131(1-3), pp. 58–67
Ya’Aini, N., Amin, N.A.S.,
Endud, S., 2013. Characterization and Performance of Hybrid Catalysts for
Levulinic Acid Production from Glucose. Microporous and Mesoporous Materials,
Volume 171, pp. 14–23
Zuo, J., Xu, C., Liu,
Y., Qian, Y., 1998. Crystallite Size Effects on the Raman Spectra of Mn3O4.
Nanostructured Materials, Volume 10(8), pp. 1331–1335