• International Journal of Technology (IJTech)
  • Vol 12, No 2 (2021)

Model Parameter Sensitivity for Structural Analysis of Composite Slab Structures in Fire

Model Parameter Sensitivity for Structural Analysis of Composite Slab Structures in Fire

Title: Model Parameter Sensitivity for Structural Analysis of Composite Slab Structures in Fire
Riza Suwondo, Lee Cunningham, Martin Gillie, Made Suangga, Irpan Hidayat

Corresponding email:


Cite this article as:
Suwondo, R., Cunningham, L., Gillie, M., Suangga, M., Hidayat, I., 2021. Model Parameter Sensitivity for Structural Analysis of Composite Slab Structures in Fire. International Journal of Technology. Volume 12(2), pp. 339-348

634
Downloads
Riza Suwondo Civil Engineering Department, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia 11480
Lee Cunningham Department of Mechanical, Aerospace and Civil Engineering, The University of Manchester, UK
Martin Gillie Department of Mechanical and Construction Engineering, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK
Made Suangga Civil Engineering Department, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia 11480
Irpan Hidayat Civil Engineering Department, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia 11480
Email to Corresponding Author

Abstract
Model Parameter Sensitivity for Structural Analysis of Composite Slab Structures in Fire

The behavior of buildings during fires has recently become a significant issue. Analyzing structures at elevated temperatures is complex and challenging in structural engineering as engineers must take into consideration factors that may not be included at ambient temperatures, namely material and geometric non-linearity as well as time-temperature-varying strength. In this study, the finite element software ABAQUS was applied to model and simulate the behavior of structures in fire events. Steel beams and columns were modeled using two-node linear beam elements, while concrete slabs were discretized using shell elements. A series of verification analyses were conducted to ensure that the analysis produced an acceptable level of accuracy. Furthermore, an extensive sensitivity study was carried out to obtain the appropriate modeling parameters to be used in subsequent numerical analyses.

Dynamic analysis; Fire engineering; Heat transfer; Steel composite; Steel structures

Introduction

The behavior of steel structures subjected to fire has recently drawn wide attention, particularly since the collapse of the World Trade Center (WTC) in September 2001. Several design codes, such as British Standard (BS) 5950 (BS EN, 2003) and Eurocode EN 1991-1-2 (CEN, 2002), have provisions for fire. Fire safety design generally aims to prevent the collapse of the building under fire conditions, giving occupants enough time to escape safely.

This research concentrates on the performance of composite buildings subjected to a fire. Composite steel frame structures have been widely used in multi-storey building construction as they offer many advantages. In this context, a composite steel frame structure is a structure in which the steel floor beams act compositely with the concrete floor slabs. Such structures have the advantage of being lightweight, and they utilize the composite interaction between the slab and steel beams to enhance their load-carrying capacity and stiffness, thus representing a more efficient use of steel compared to a non-composite frame. Moreover, metal decking on top of the steel beams can act as permanent formwork to eliminate external formwork. Hence, the use of a composite slab reduces construction as well as workforce costs.

However, because steel is a sensitive material, its material properties, particularly strength and modulus of elasticity, are significantly reduced at high temperature. Fire insulation, such as spray fire-resistive material (SFRM), is commonly applied to the surface of the steel structure to maintain the stability of the structures during a fire. The main aim of fire insulation is to delay the temperature rise of the steel at elevated temperatures.

    In standard fire design, the fire resistance of structures has been evaluated based on the behavior of isolated structures under standard fire tests (BS EN, 1999). It is believed that this approach does not represent the actual behavior of a building in a fire. The behavior of a composite building in a real fire could be seen during the Cardington Tests (Bailey et al., 1999) in the United Kingdom (UK), which indicated that the whole building structure had higher fire resistance than the associated single elements. Significant research has been conducted on the modeling of composite buildings in a fire (Gillie et al., 2001; Nguyen et al., 2015; Jiang et al., 2017). Most previous studies have highlighted and discussed the complexities of modeling structures in a fire. However, there is a lack of detailed research into the influence of parameters on the composite steel frame at high temperature. The present study focuses on this gap. The main objective of this study is to develop and validate numerical models capable of predicting the 3-D behavior of composite steel frames in a fire. A series of sensitivity studies were also performed to investigate the parameters that affect the behavior of composite buildings during a fire.

Conclusion

This study has described a numerical model generated using ABAQUS. Steel beams and columns were modeled using 1-D line elements, and concrete slabs were modeled using shell elements. A tie constraint between the steel beam and concrete slab was applied to accommodate the fully composite action between the two. The beam-to-column and secondary beam-to-primary beam connections were assumed to be rigid and pinned, respectively.

Because no new experimental study was conducted, a series of validations were carried out to confirm that the results of the analysis provide an acceptable level of accuracy. The results were compared to those of existing experiments. Overall, the results obtained from the analysis demonstrate a good level of agreement with those obtained by others. Therefore, the modeling approach has been validated for important specific aspects of structural behavior of composite buildings in fires. 

The results of the sensitivity study indicate that it is appropriate to use a default energy dissipation factor of 0.2´10-4. It can also be seen that the mesh sizes have little influence on the deflection, in which even a mesh size of 0.5 m produces reasonable results. The results also show that the deflection is not sensitive to the compressive strength of the concrete slab. Thus, it seems that the reduction in compressive strength has a minor effect on the results. Furthermore, the presence of the composite slab increases the fire resistance of the frame by 50% compared to the frame without the concrete slab.

        However, it should be noted that the beam element used in this study cannot capture all possible failure modes, such as local buckling. An experimental study by Wang and Li (2009) demonstrated the possibility that a steel column can fail prematurely due to localized buckling. Detailed elements, such as solid or shell elements, can be used if detailed beam behavior is needed. In addition, the connections were assumed as rigid and pinned, so connection failure was not taken into account.

Acknowledgement

    This work is supported by the Research and Technology Transfer Office, Bina Nusantara University as a part of Bina Nusantara University’s International Research Grant, entitled “Sustainable infrastructure and transportation development in rural and coastal area,” with contract number: No.080/VR.RTT/Vlll/2020 and contract date: 21 August 2020

References

Bailey, C.G., Lennon, T., Moore, D.B., 1999. The Behaviour of Full-Scale Steel-Framed Buildings Subjected to Compartment Fires. Structural Engineer, Volume 77, pp. 15–21

BS EN, 2003. BS5950 Part 8: Code of Practice for Fire Resistant Design. British Standard Institution, London, UK

BS EN, 1999. BS EN 1363-1:1999 Fire Resistance Test: General Rééquipements. British Standard Institution, London, UK

CEN, 2002. Eurocode 1: Actions on Structures. Part 1–2: General Actions. Actions on Structures Exposed to Fire. British Standard Institution, London, UK

CEN, 2004. Eurocode 2: Design of Concrete Structures. Part 1–2: General Rules. Structural Fire Design. British Standard Institution, London, UK

CEN, 2005a. Eurocode 3: Design of Steel Structures. Part 1–2: General Rules. Structural Fire Design. British Standard Institution, London, UK

CEN, 2005b. Eurocode 4: Design of Composite Steel and Concrete Structures. Part 1–2: General Rules. Structural Fire Design. British Standard Institution, London, UK

Gillie, M., 2009. Analysis of Heated Structures: Nature and Modelling Benchmarks. Fire Safety Journal, Volume 44(5), pp. 673–680

Gillie, M., Usmani, A.S., Rotter, J.M., 2001. A Structural Analysis of the First Cardington Test. Journal of Constructional Steel Research, Volume 57(6), pp. 581–601

Jiang, B., Li, G.Q., Izzudin, B., 2017. Simulations on Progressive Collapse Resistance of Steel Moment Frames under Localized Fire. Journal of Constructional Steel Research, Volume 138, pp. 380–388

Jiang, J., Li, G.-Q., 2018. Parameters Affecting Tensile Membrane Action of Reinforced Concrete Floors Subjected to Elevated Temperatures. Fire Safety Journal, Volume 96, pp. 59–73

Kirby, B.R., 1998. The Behaviour of Multi-storey Steel Frame Building in Fire: Technical Report. British Steel

Kirby, B.R., Preston, R.R., 1988. High Temperature Properties of Hot-rolled, Structural Steels

       for Use in Fire Engineering Design Studies. Fire Safety Journal, Volume 13(1), pp. 27–37

Lin, S., Huang, Z., Fan, M., 2015. The Effects of Protected Beams and their Connections on the Fire Resistance of Composite Buildings. Fire Safety Journal, Volume 78, pp. 31–43

Lubliner, J., Oliver, J., Oller, S., Onate, E., 1989. A Plastic-damage Model for Concrete. International Journal of Solids and Structures, Volume 25(3), pp. 299–326

Memari, M., Mahmoud, H., Ellingwood, B., 2014. Post-earthquake Fire Performance of Moment Resisting Frames with Reduced Beam Section Connections. Journal of Constructional Steel Research, Volume 103, pp. 215–229

Nguyen, T.-T., Tan, K.-H., Burgess, I.W., 2015. Behaviour of Composite Slab-beam Systems at Elevated Temperatures: Experimental and Numerical Investigation. Engineering Structures, Volume 82, pp. 199–213

Schneider, U., 1988. Concrete at High Temperatures: A General Review. Fire Safety Journal, Volume 13, pp. 55–68

Selamet, S., Bolukbas, C., 2016. Fire Resilience of Shear Connections in a Composite Floor: Numerical Investigation. Fire Safety Journal, Volume 81, pp. 97–108

Wang, W.-Y., Li, G.-Q., 2009. Behavior of Steel Columns in a Fire with Partial Damage to Fire Protection. Journal of Constructional Steel Research, Volume 65(6), pp. 1392–1400