Published at : 21 Jul 2020
Volume : IJtech
Vol 11, No 3 (2020)
DOI : https://doi.org/10.14716/ijtech.v11i3.3831
Aneta Ocieczek | Gdynia Maritime University, Faculty of Entrepreneurship and Quality Science, Department of Commodity Science and Quality Management, Morska Street, 81-87, 81-225 Gdynia, Poland |
Zbigniew Otremba | Gdynia Maritime University, Faculty of Marine Engineering, Department of Physics, Morska Street, 81- 87, 81-225 Gdynia, Poland |
This
paper presents one of the aspects of a wide range of challenges related to
space exploration. The main factor making it possible for humans to engage in
space exploration is the provision of a basic element of existence, which is
stable quality food. The starting point for the conducted research was the
assumption that surface phenomena, involving water and determining food
stability, can occur with different intensities under extra-terrestrial
conditions. The results of this study describe the effect of the 10 mT static
magnetic field on the process of water vapor particle adsorption and desorption
on the surface of organic samples. The research material included powders with
hygroscopic properties: gelatin (protein) and starch (carbohydrates). The
research included a comparison of the direction, dynamics, and range of water
vapor sorption in control conditions in a homogenous, static magnetic field.
The research involved the use of desiccators with aqueous saturated solutions
of NaOH and NaCl, and a static magnetic field generator. The obtained results
indicate that magnetic field has an effect on the course of sorption on organic
samples, and it can determine food stability during storage. The results of
this work also indicate that there is the potential for reducing the costs of
food preservation by drying it in the presence of a magnetic field; the study
introduces innovative solutions in the construction of cereal silos, which is part
of the concept of sustainable development.
Range and dynamics of sorption; Sorption properties of food; Space exploration; Static magnetic field
In the context of the results of many research studies
(Ruiz Celma et al., 2012; Ocieczek, 2014; Mishra et
al., 2016) on the durability of dehydrated foods, a question has arisen
as to whether a magnetic field (Zubaidah et al.,
2014) has any impact on the surface phenomena occurring in organic
matter that could potentially determine its storage stability.
The phenomenon of water vapor
sorption on the surface of organic samples, e.g., food products, can occur with
various kinetics, depending on their properties as determined by their chemical
composition and physical structures, on the difference between the water
activity in the sample and the relative pressure of the surrounding air, and on
the nature of the phenomenon taking the form of adsorption or desorption (Gondek and Lewicki, 2007; Huespe et al., 2017).
Studies on the kinetics (including the direction
and the dynamics) of water vapor sorption in selected food products have
demonstrated that the effect of the relative moisture of the atmosphere on
sorption depends on the physical and chemical properties of the product. Starch
is a natural substance with a relatively high homogeneity (Judawisastra et al., 2018) and high kinetics of
sorption, which is determined by a significant number of sorption centers with
a balanced energy level. Sorption does not reveal the change in the mechanism
in the course of sorption under the impact of water vapor in the surrounding
atmosphere (Ocieczek, 2013). However,
changes in the sorption mechanism of amorphous products is a concern, and they
are most often related to structural changes in the components of the products,
which may include swelling, the increased mobility of protein chains, or the
exposure of new sorption centers. Such changes are typical of powdered gelatin,
which has a partially crystalline polymer with a lower degree of order in
comparison to starch granules. Gelatin is subject to structural changes under
the effect of water, even swelling in contact with cold water (Park et al., 2008). As a result of the structural
transformations of the component, the rate of sorption is either constantly
maintained at a high level or periodically increases, since sorption includes
an increasing number of active centers available for water particles.
Additionally, after absorbing a certain amount of water, specific for the given
substance, the amorphous components can transform into a crystalline form (Pa?acha and Sitkiewicz, 2010), which, for average
values of relative humidity of the atmosphere, can only absorb and maintain
small amounts of water. The change of an amorphous component into a crystalline
form triggers a change in the sorption mechanism.
Previous studies have demonstrated the effects of
magnetic field on various types of biological and physicochemical processes,
which were particularly applied in environmental engineering, e.g., in the
crystallization of calcium carbonate (Fathi et al.,
2006), water treatment (Ambashta and
Sillanpää, 2010), the coagulation and sedimentation of colloid particles
(Higashitani, 1996), and sewage treatment (Ji et al., 2010; Zhang et al., 2011). Moreover,
research findings have indicated that the magnetic field has an effect on the
dynamics of some of the reactions that occur in food during its storage (K?dzierska-Matysek et al., 2018) as well as on
the proper functioning of living organisms (Fey et
al., 2019; Stankevi?i?t? et al., 2019; Jakubowska et al., 2019).
The only work addressing the issue of the effect
of a magnetic field on the course of surface phenomena was a study by Ocieczek and Otremba (2019) on the effect of a
magnetic field on the course of water desorption from the surface of starch
granules. However, the effects of the magnetic field on the course of surface
phenomena in a wider range of water activities have not been examined yet.
Therefore, the study discussed in this paper aimed to evaluate the effect of a
static magnetic field on the intensity (which involves direction, dynamics, and
range) of the surface phenomena, expressed by the adsorption or desorption of
water vapor by the matrix of the solid substance (organic sample). The results
were used to verify the assumption concerning the existence of a significant
effect of static magnetic field on the intensity of the sorption process that
occurs on the surface of organic samples demonstrating hygroscopic properties.
It was hypothesized that the effect of the magnetic field changes the
thermodynamic status of the water particles remaining in the environment and in
the organic samples under examination. Consequently, the natural phenomena
related to the movement of water molecules in order to reach dynamic
equilibrium with the environment, as demonstrated by maximum disorder and
minimum energy, can occur with different intensities.
The results of the experiments demonstrate the effect
of a static magnetic field on the kinetics and the range of water adsorption by
powdered gelatin and starch. It was found that a static and homogenous 10 mT
magnetic field increases the rate of water adsorption by those substances,
particularly in the initial phase of this process. Additionally, due to the
magnetic field, the status of dynamic equilibrium between the sample and the
atmosphere is established at various levels, i.e., it is higher in the magnetic
field. The effect of the field can be explained by the change in the
thermodynamic state of the water particles, which leads to increased water
vapor pressure, resulting in either an increase in entropy or stimulation of
the substances’ ability to adsorb water, which should also be treated as a
factor favoring an increase in entropy.
The water desorption of those substances is similar in
the magnetic field and in the absence of that field. However, there are no
grounds to claim that the magnetic field does not participate in this process.
It seems more probable that the field can exert its influence through mutually
competitive kinetic processes.
The results of this work provide a starting point in
research that aims to create the foundations for predicting changes in food
stored under conditions, such as space exploration environments, that are
different from terrestrial conditions. The results of this work also indicate
that the presence of a magnetic field with an induction greater than the
Earth's may contribute to the change in the dynamics of the drying process and
affect the state of water in dehydrated materials, which is important from the
point of view of the efficiency of the drying process and food stability during
storage. This, in turn, may have great importance for the implementation of the
concept of sustainable development based on an energy-efficient economy (Shakouri et al., 2018).
This
work was supported by the grant No. WPiT/2019/PZ/05
Filename | Description |
---|---|
R2-CE-3831-20200602193114.jpg | Figure 1 Experimental setup: desiccator with reference samples in geomagnetic field 0.05 mT (left), desiccator between Helmholtz coils generated static uniform magnetic field 10 mT (right) |
R2-CE-3831-20200602193217.jpg | Figure 2 The rate of changes in the weight of a gelatine sample by adsorption of water vapour regulated by saturated NaCl solution (75%) in ordinary conditions and under the effect of an artificial static magnetic field |
R2-CE-3831-20200602193310.jpg | Figure 3 The rate of changes in the weight of a gluten-free starch sample by adsorption of water vapour regulated by saturated NaCl solution (75%) in ordinary conditions and under the effect of an artificial static magnetic field |
R2-CE-3831-20200602193359.jpg | Figure 4 Changes in the weight of a gelatine sample by adsorption of water vapour regulated by saturated NaCl solution (75%) in ordinary conditions and under the effect of an artificial static magnetic field |
R2-CE-3831-20200602193501.jpg | Figure 5 Changes in the weight of a gluten-free starch sample by adsorption of water vapour regulated by saturated NaCl solution (75%) in ordinary conditions and under the effect of an artificial static magnetic field |
R2-CE-3831-20200602193548.jpg | Figure 6 The rate of changes to the weight of gelatine samples by desorption of water vapour regulated by saturated NaOH (8.9%) solution in ordinary conditions and under the effect of an artificial static magnetic field |
R2-CE-3831-20200602193633.jpg | Figure 7 The rate of changes to the weight of gluten-free starch samples by water desorption of water vapour regulated by saturated NaOH (8.9%) solution in ordinary conditions and under the effect of an artificial static magnetic field |
R2-CE-3831-20200602193716.jpg | Figure 8 Changes to the weight of gelatine samples by desorption of water vapour pressure regulated by saturated NaOH solution (8.9%) in ordinary conditions and under the effect of an artificial static magnetic field |
R2-CE-3831-20200602193753.jpg | Figure 9 Changes in the weight of gluten-free starch samples by desorption of water vapour regulated by saturated NaOH (8.9%) solution in ordinary conditions and under the effect of an artificial static magnetic field |
R2-CE-3831-20200602193909.docx | Table 1 Statistical evaluation of the differences between average changes in the weight of samples stored in geomagnetic field 0.05 mT and in an artificial magnetic field 10 mT both in temperature and humidity controlled conditions (20°C, 75%) |
R2-CE-3831-20200602194012.docx | Table 2 Statistical evaluation of differences between average changes in the weight of samples stored in geomagnetic field 0.05 mT and in an artificial magnetic field 10 mT both in temperature and humidity controlled conditions (20°C, 8.9%) |
Ambashta, R.D.,
Sillanpää, M., 2010. Water Purification using Magnetic Assistance: A Review. Journal
of Hazardous Materials, Volume 180 (1–3), pp. 38–49
Bolton, W., 1982.
Outline of Physics. PWN, Warszawa, Poland.
Fathi, A., Mohamed, T.,
Claude, G., Maurin, G., Mohamed, B.A., 2006. Effect of a Magnetic Water
Treatment on Homogeneous and Heterogeneous Precipitation of Calcium Carbonate. Water
Research, Volume 40(10), pp. 1941–1950
Fey, D.P.,
Greszkiewicz, M., Otremba, Z., Andrulewicz, E., 2019. Effect of Static Magnetic
Field on the Hatching Success, Growth, Mortality, and Yolk-sac Absorption of
Larval Northern Pike Esox lucius. Science of the Total Environment,
Volume 647, pp. 1239–1244
Feynman, R.P.,
Leighton, R.B., Sands, M., 1974. Feynman Lectures in Physics. Volume 1, Part 2.
PWN, Warszawa, Poland.
Figura, L.O., Teixeira,
A.A., 2007. Food Physics. Physical Properties-Measurement and Applications.
Springer Press, Heidelberg, Germany
Gondek, E., Lewicki,
P.P., 2007. Kinetics of Water Vapour Sorption by Selected Ingredients of
Muesli-type Mixtures. Polish Journal of Food and Nutrition Sciences,
Volume 57(3A), pp. 23–26
Higashitani, K., 1996.
Effects of Magnetic Field on Stability of Non-magnetic Colloidal Particles. In: Proceedings of the 2nd
International Meeting on Anti-Scale Magnetic Treatment. Cranfield University, United
Kingdom
Huespe, V.J.,
Belardinelli, R.E., Pereyra, V.D., Manzi, S.J., 2017. Comparison between
Different Adsorption–desorption Kinetics Schemes in Two-dimensional Lattice
Gas. Physica A: Statistical Mechanics and its Applications, Volume 488,
pp. 162–176
Jakubowska, M.,
Urban-Malinga, B., Otremba, Z., Andrulewicz, E., 2019. Effect of Low Frequency
Electromagnetic Field on the Behavior and Bioenergetics of the Polychaete
Hediste Diversicolor. Marine Environmental Research, Volume 150,
p.104766
Ji, Y., Wang, Y., Sun,
J., Yan, T., Li, J., Zhao, T., Yin, X., Sun, C., 2010. Enhancement of
Biological Treatment of Wastewater by Magnetic Field. Bioresource Technology,
Volume 101, pp. 8535–8540
Judawisastra, H.,
Sitohand, R.D., Taufig, D.I., Mardiyati, 2018. The Fabrication of Yam Bean
(Pachyrizous erosus) Starch based Bioplastics. International Journal of
Technology, Volume 9(2), pp. 345–352
K?dzierska-Matysek, M., Matwijczuk, A., Florek, M., Kornarzy?ski, K., Matwijczuk, A., Wolanciuk, A., Bar?owska, J., G?adyszewska, B., 2018. Effect of Magnetic Field on 5-hydroxymethylfurfural Content, Diastase Activity and Changes in the ATR-FTIR Spectra in Raw Buckwheat Honey. Przemys? Chemiczny, Volume 97(3), pp. 381–385
Mishra, P.K., Mishra,
V.K., Maurya, V.K., Chaurasiya, J., Sahay, S., Mauriya, A.K., Tyagi, S., 2016.
Evaluation of Packaging Containers for Storage of Osmo-dehydrated Product of
Mango. Ecology, Environment and Conservation, Volume 22(2), pp. 635–640
Ocieczek, A., 2013.
Impact of Comminution on Adsorption Properties of Gluten-free Wheat Starch. Acta
Agrophysica PAN, Volume 20(1), pp. 125–136
Ocieczek, A., 2014.
Comparison of the Sorption Properties of Milk Powder with Lactose and without
Lactose. Acta Agrophysica PAN, Volume 21(4), pp. 457–467
Ocieczek, A., Kostek,
R., Ruszkowska, M., 2015. Kinetic Model of Water Vapour Adsorption by
Gluten-free Starch. International Agrophysics, Volume 29(1), pp. 115–119
Ocieczek, A., Otremba,
Z., 2019. Effect of a Magnetic Field on Water Desorption from Potato Starch. Acta
Agrophysica PAN, Volume 26(3), pp. 43–55
Pa?acha, Z.,
Sitkiewicz, I., 2010. Physical Properties
of Food. WNT, Warszawa, pp. 149–150
Park, J.W., Whiteside,
W.S., Cho, A.Y., 2008. Mechanical and Water Vapor Barrier Properties of
Extruded and Heat-pressed Gelatin Films. LWT - Food Science and Technology,
Volume 41(4), pp. 692–700
Ruiz Celma, A.,
Cuadros, F., López-Rodríguez, F., 2012. Characterization of Pellets from
Industrial Tomato Residues. Food and Bioproducts Processing, Volume
90(4), pp. 700–706
Shakouri, M., Krishnan,
E.N., Dehabadi, L., Karoyo, A.H., Simonson, C.J., Wilson, L., 2018. Vapor
Adsorption Transient Test Facility for Dehumidification and Desorption Studies.
International Journal of Technology, Volume 9(6), pp. 1092–1102
Stankevi?i?t?, M.,
Jakubowska, M., Pažusien?, J., Makarasa, T., Otremba, Z., Urban-Malinga, B.,
Fey, D.P., Greszkiewicz, M., Sauliut?, G., Baršien?, J., Andrulewicz, E., 2019.
Genotoxic and Cytotoxic Effects of 50 Hz 1 mT Electromagnetic Field on Larval
Rainbow Trout (Oncorhynchus mykiss), Baltic Clam (Limecola balthica) and Common
Ragworm (Hediste diversicolor). Aquatic Toxicology., Volume 208, pp.
109–117
Zhang, H., Zhao, Z.,
Xu, X., Li, L., 2011. Study on Industrial Wastewater Treatment using
Superconducting Magnetic Separation. Cryogenics, Volume 51(6), pp.
225–228
Zubaidah, T., Kanata,
B., Paniran, 2014. Three-dimensional Mapping of Static Magnetic Fields Over a
Semi-anechoic Chamber. International Journal of Technology, Volume 5(3),
pp. 209–218