Published at : 29 Jan 2020
Volume : IJtech
Vol 11, No 1 (2020)
DOI : https://doi.org/10.14716/ijtech.v11i1.3335
Donanta Dhaneswara | - Departement of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia - |
Jaka Fajar Fatriansyah | Department of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia |
Frans Wensten Situmorang | Departement of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia |
Alfina Nurul Haqoh | Departement of Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia |
High purity
silica has been successfully synthesized from rice husk ash (RHA) by alkaline
extraction using the reflux process followed by acidification. For this study,
rice husk was burned in an electric furnace at 700°C for 5 hours to produce
RHA. The RHA was refluxed using sodium hydroxide with concentrations of 1.25×10-3
M (equal to 5% NaOH) and 2.5×10-3 M (equal to 10% NaOH). The
acidification process was performed using hydrochloric acid (HCl) 1 M and
acetic acid (CH3COOH) 1M to produce silica gel. Then, the silica gel
was heated to 120°C for 12 hours to produced silica. The characterization of
silica was determined using energy-dispersive X-ray analysis, Fourier-transform
infrared spectrometry, the Brunauer–Emmet–Teller method, and X-ray diffraction.
The results show HCl acidification produced silica of a higher purity than that
produced by CH3COOH acidification. The higher concentration of
sodium hydroxide led to higher purity of silica. Based on X-ray diffraction,
the silica extracted from RHA was found to be amorphous, and Fourier-transform
infrared spectrometry revealed bending and stretching vibrations of Si-O and
Si-O-Si. The silica extracted by HCl acidification had a surface area of 236 m2/g,
a total pore volume of 0.54 cc/g, and an average pore diameter of 9 nm. The
silica extracted by CH3COOH acidification had a surface area of 204
m2/g, a total pore volume of 0.43 cc/g, and an average pore diameter
of 8.4 nm.
Acidification; Reflux; Rice husk ash; Silica gel; Xerogel
Rice husk accounts for a significant amount of agricultural waste in many
rice-producing countries. In 2015, Indonesia produced about 75 million tons of
paddy, and rice husk accounts for 20–22% of the weight of paddy (Saleem et al., 2014). The accumulation of rice husk waste can pose a
threat to the environment if it is not properly controlled. Rice husk is
separated from rice grains during the milling process because it is low in
nutrients (Lee et al., 2017). Due to its poor nutrient composition, rice husk is
usually used as an animal food ingredient and as a low-cost burning fuel, which
is ineffective and can lead to air pollution. Nevertheless, compared to other
biomass fuels, rice husk contains unusually high levels of cellulose, lignin,
and ash, which are its major constituents. The actual composition varies, but
the typical composition is as follows: 38% cellulose, 22% lignin, 20% ash, 18%
pentosanes, and 2% other organics (Chandrasekhar et
al., 2003). Rice husk ash (RHA)
In recent times, rice husk has been utilized in
various applications such as in the manufacture of fertilizer (due to its high
lignin content), in the preparation of activated carbon, and as an industrial
fuel for gasification or combustion boilers (Namdeo, 2018). Scientists are particularly attracted to the
potential of rice husk as a raw material for silica-based materials, as well as
pure silicon, silica nitride, silicon tetrachloride zeolite, and amorphous
silica (Sun and Gong, 2001).
Controlled
combustion of rice husk produces ash that contains high purity amorphous
silica. Amorphous silica can be obtained from RHA when the rice husks are
burned at a temperature of 700°C, and this is transformed into crystalline
silica when it is burned at a temperature of over 850°C (Fernandes et al., 2016). This silica has many applications as
a filler, adsorbent, catalyst support, a component of star gels, and a source
for producing superior quality silicon and its compounds.
Silica
is a basic raw material that is widely used in semiconductors, ceramics,
polymers, and several industries, such as the rubber industry and
pharmaceuticals (Fernandes et al., 2016). In
particular, silica can be used for gas adsorption (Dhaneswara
et al., 2019, Fatriansyah et al., 2019) and heavy metal remediation in
water (Dhaneswara et al., 2018). In
mesoporous form, silica can be used too in gas adsorption application (Wilson and Mahmud, 2015).
Since
silica can be produced from RHA, several reports have addressed the extraction
of silica from rice husk. This process not only produces valuable silica but
also reduces pollution problems caused by the uncontrolled combustion of rice
husk.
Many researchers have developed methods for extracting silica from rice husks. Riveros and Garza (1986) reported that silica can be recovered from rice husk by acid leaching. Later, Kalapathy et al. (2000) discovered the alkaline extraction sol-gel method for recovering silica from rice husk, which is based on the fact that silica can be dissolved in alkaline solution. Because silica has high solubility in a solution with a pH above 10, it can dissolve in alkaline solution to form sodium silicate (Qomariyah et al., 2019). Acidification is also a necessary part of the process to produce silica gel. This process has numerous advantages; it is not as costly or as damaging to the environment as the quartz fusing method (Todkar et al., 2016). It has been reported that the character and purity of silica are more affected by chemical treatment than by thermal treatment (Daifullah et al., 2004).
This study aims to synthesize amorphous silica using rice husk waste as a raw material of SiO2. A simple reflux process using an alkaline solution (sodium hydroxide) was followed by acidification to form silica gel. Then, the effects of various alkaline concentrations and the two acidification methods were investigated by examining the physical, structural, and mechanical properties of the amorphous silica obtained from rice husk waste.
This
study demonstrates that high purity silica can be obtained from rice husk using
a simple alkaline-acidification process. Amorphous silica with a purity of
98–99% was obtained from rice husk by alkaline extraction using a reflux
process followed by acidification. In this study, the silica extracted from
rice husk by acidification using HCl had the highest purity and the largest
surface area (236.2 m2/g). Moreover, dissolving the silica in a
higher concentration of alkaline solution also had a significant effect,
resulting in a higher surface area but a smaller total volume and average
diameter. Fourier-transform infrared spectra characterization shows that the
synthesized silica has both Si-O-Si and Si-O bonds, and the XRD pattern shows
that it has an amorphous structure. Silica with a large surface area can be
used for various applications, such as catalysts and adsorbents.
This
research was funded by the Directorate of Research and Community Services
(DRPM), Universitas Indonesia, through Hibah PTUPT under contract no.
NKB-1729/UN2.R3.1/HKP.05.00/2019.
Filename | Description |
---|---|
R1-MME-3335-20190928120903.jpg | --- |
R1-MME-3335-20190928120922.jpg | --- |
R1-MME-3335-20190928120937.jpg | --- |
R1-MME-3335-20190928120954.jpg | --- |
R1-MME-3335-20190928121022.jpg | --- |
R1-MME-3335-20190928121041.JPG | --- |
Anuar, M.F., Fen, Y.W., Zaid,
M.H.M., Matori, K.A., Khaidir, R.E.M., 2018. Synthesis and Structural
Properties of Coconut Husk as Potential Silica Source. Results in Physics, Volume 11, pp. 1–4
Aripin, H., I Made, J.,
Mitsudo, S., I Nyoman, S., Priatna, E., Busaeri, N., Sabchevski, S., 2017.
Formation and Particle Growth of TiO2 in Silica Xerogel Glass
Ceramic during a Sintering Process. International
Journal of Technology, Volume 8(8), pp.1507–1515
Chandrasekhar, S.,
Satyanarayana, K.G., Pramada, P.N., Raghavan, P., Gupta, T.N., 2003.
Processing, Properties and Applications of Reactive Silica from Rice Husk—An
Overview. Journal of Materials Science,
Volume 38, pp. 3159–3168
Daifullah, A.A.M., Awwad,
N.S., El-Reefy, S.A., 2004. Purification of Wet Phosphoric Acid from Ferric
Ions using Modified Rice Husk. Chemical
Engineering and Processing: Process Intensification, Volume 43(2), pp. 193–201
Dhaneswara, D., Fatriansyah, J.F.,
Mahagnyana, A.B., Delayori, F., Putranto, D.A., Adriyani Anwar, S.U.A., 2018.
The Role of Modification SBA-15 Mesoporous Silica with CPTMS in Cd Adsorptions.
In: International Conference on
Chemistry and Material Science, Volume 299(1), pp. 1–11
Dhaneswara, D., Fatriansyah,
J.F., Yusuf, M.B., Abdurrahman, M.H., Kuskendrianto, F.R., 2019. Study of Si
Surface Adsorption Towards Hydrogen Molecule. In: IOP Conference Series: Materials Science and Engineering,
Volume 547(1), pp. 1–7
Fatriansyah, J.F., Dhaneswara,
D., Abdurrahman, M.H., Kuskendrianto, F.R., Yusuf, M.B., 2019. Modeling of
Nitrogen Adsorption Phenomena in Amorphous Silica using Molecular Dynamics
Method. AIP Conference Proceedings,
Volume 2169(1), pp. 030001-1–030001-8
Fernandes, I.J., Calheiro,
D.F., S?nchez, A.L., Camacho, A.L.D., de Campos Rocha, T.L.A., Moraes,
C.B.A.M., de Sousa, V.C., 2016. Characterization of Silica Produced from Rice
Husk Ash: Comparison of Purification and Processing Methods. Materials Research, Volume 20(2), pp.
512–518
Kalapathy, U., Proctor, A., Shultz,
J., 2000. A Simple Method for Production of Pure Silica from Rice Hull Ash. Fuel and Energy Abstract, Volume 42(1),
pp. 257–262
Lee, J.H., Kwon, J.H., Lee,
J.W., Lee, H.-S., Chang, J.H., Sang, B.I., 2017. Preparation of High Purity
Silica Originated from Rice Husks by Chemically Removing Metallic Impurities. Journal of Industrial and Engineering
Chemistry, Volume 50, pp. 79–85
Mukherjee, D., Roy, A.B.,
1991. Predator Mediated Co-Existence of Three Competing Species with L-V Type
Interactions. Ecological Modelling,
Volume 58(1–4), pp. 285–301
Namdeo, M., 2018. Magnetite
Nanoparticles as Effective Adsorbent for Water Purification: A Review. Advances in Recycling & Waste Management,
Volume 2(3), pp. 126–129
Okoronkwo, E.A., Imoisili,
P.E., Olusunle, S.O.O., 2013. Extraction and Characterization of Amorphous
Silica from Corn Cob Ash by Sol-Gel Method. Chemistry
and Materials Research, Volume 3(4), pp. 2225–2956
Qomariyah, L., Widiyastuti,
W., Winardi, S., Kusdianto, K., Ogi, T., 2019. Volume Fraction Dependent
Morphological Transition of Silica Particles Derived from Sodium Silicate. International Journal of Technology,
Volume 10(3), pp. 603–612
Riveros, H., Garza, C., 1986.
Rice Husk as a Source of High Purity Silica. Journal of Crystals Growth, Volume 75(1), pp. 126–131
Saleem, M., Rustam, M.,
Naqvi, H.J., Jabeen, S., Akhtar, A., 2014. Synthesis of Precipitated Silica from
Corn Cob by using Organic Acids. Science
International (Lahore), Volume 27(1), pp. 265–269
Sun, L., Gong, K., 2001.
Silicon-based Materials from Rice Husks and Their Applications. Industrial and Engineering Chemistry
Research, Volume 40, pp. 5861–5877
Todkar, B.S., Deorukhkar,
O.A., Deshmukh, S.M., 2016. Extraction of Silica from Rice Husk. International Journal of Engineering
Research and Development, Volume 12(3), pp. 69–74
Wilson, L.D., Mahmud, S.T.,
2015. The Adsorption Properties of Surface-modified Mesoporous Silica Materials
with ß-Cylodextrin. International Journal
of Technology, Volume 6(4), pp. 533–545