Published at : 16 Oct 2020
Volume : IJtech
Vol 11, No 4 (2020)
DOI : https://doi.org/10.14716/ijtech.v11i4.2631
Salahaddin Yasin Baper | Architectural Engineering Department, Salahaddin University –Erbil, Zanko Street, Kirkuk Road, Erbil City, Kurdistan Region, Iraq, 44002 |
Mahmood Khayat | Architectural Engineering Department, Salahaddin University –Erbil, Zanko Street, Kirkuk Road, Erbil City, Kurdistan Region, Iraq, 44002 |
Lana Hasan | Architectural Engineering Department, Salahaddin University –Erbil, Zanko Street, Kirkuk Road, Erbil City, Kurdistan Region, Iraq, 44002 |
Environmental problems were initiated with the rise of
human civilization, and they increased with the rise in technology’s
contribution to human lives. Researchers in the field of architecture believe
that regenerative approaches are systems based on aligning architectural design
with natural resources to provide positive outcomes. Regenerative design holds
significant promise for a new theory of sustainable architecture. The aim of
this paper is to provide a theoretical framework for the concept of
regenerative architecture and testing materials’ effectiveness (thermal,
availability, waste, and toxicity) and impacts on shifting towards regenerative
architecture. Materials’ thermal properties were examined by determining energy
consumption through Ecotect as a simulation program. However, other factors
were measured by a checklist derived from an intense review of the literature.
The results revealed that the existing current buildings in Erbil City do not
lie in the regenerative zone. Moreover, the study also shows that material
selection plays a significant role in reducing energy consumption and toxicity
levels that result from moving architectural design towards regenerative design.
Architectural design concepts; Ecotect; material effectiveness; Regenerative architecture;
Regenerative
architecture (which goes beyond the scope of sustainable design) is considered
the highest architectural design concept in terms of positive productivity
towards the environment, while sustainability aims at being neutral, which mean
less harm to nature and the environment. These aims can be achieved by
implementing some theories, such as place-based theory, co-evolution system
theory, and whole and living system theory. The “regenerative design” term has
been newly integrated into the architectural design area, but the major
principals that have recently been recognized as regenerative design tenets are
mainly based on the previous works of ecological design professionals (Williams, 2014). Therefore, a change in mindset
is needed to produce a regenerative design whose goal is not only causing less
damage but also making designs contribute to maintain the ecological system as
healthy and productive (Reed, 2007; Baper, 2013; Cole,
2015; Berawi, 2017).
This paper has two main objectives. The first objective is to establish a multi-dimensional model for regenerative architecture, which includes the most effective parameters.
The second objective is to extend the efficiency analysis of material effectiveness strategies that improve cost effectiveness, energy consumption, and the use non-toxic, ecologically regenerative materials in housing complexes projects in Erbil City. The selection of typical housing projects will urge investors as well as householders to consider the importance of material effectiveness during construction periods. The goal is to design a model that can propose net-positive contributions and add value by using new strategies that shift from net-zero to net-positive, creating zero waste, which has a greater output than its input. In other words, regenerative architecture intends to adapt the current available technologies towards a new system that provides no waste with positive outcomes by melding architecture’s physical properties within nature (ground, native plants, and ecological surroundings). It is a representation of an essential rethinking of architectural design by controlling the use of energy, water, carbon emissions, and waste generation reduction (Zari, 2009; Zari and Jenkin ,2010).
In parallel, the study discusses material
effectiveness strategies that have been proposed to improve cost effectiveness,
energy consumption, and the use of non-toxic, ecologically regenerative
materials in housing complex projects in Erbil City. Locally available
materials must be used in regenerative projects that contribute to broadening
the regional economy in sustainable practices, products, and services (Living
Building Challenges, 2012).
The construction of buildings consumes large volumes of resources, which is why material choices between biodegradable, recycled, and sustainable materials makes a huge difference (Franzoni, 2011). Material selection is crucial because it can change a building from sustainable to regenerative. A sustainable building can be constructed using green-material construction. Similarly, utilizing regenerative material-construction produces a regenerative building. The selection of typical housing projects will urge investors as well as householders to consider the importance of material effectiveness during construction periods.
Figure
1 Range
of sustainability approaches (Reed, 2007)
The
regenerative architecture concept goes beyond “less bad” or even “net-zero”
design approaches to sustainability and aims at “net positive” design in
architecture. It aims to regenerate systems with complete effectiveness that
allow the co-evolution of humans’ built environment along with nature. The most
influential factors in assessing regenerative building are: energy generation,
water purification, material effeteness, responsible places, and indoor
environmental quality. Hence, regenerative architecture can be identified and
designed by considering these factors. In other words, a building can be
considered regenerative if all the above factors exist in its design. A
checklist can also be generated from these five factors to evaluate whether a
building is regenerative or not. After applying the checklist factors to local
cases in Erbil City, the results indicated that all local cases are within the
conventional design approach.
The
analysis of the simulation results indicated that all case studies in Erbil
City are outside of regenerative design, rather than all considered as
degenerative building, because their U-values are greater than 0.1 W/m2K,
which is considered the U-value of regenerative buildings by the reviewed
literature. However, the comparative study between the U-values of the case
studies has shown that Vital City has the closest U-values, at 0.21 W/m2K, to the suggested U-value for regenerative
designs.
Despite
reducing energy consumption by adding XPS to the “as built” wall material, the
level of toxicity in the case studies was raised, which is not allowed in
regenerative design concepts, whereas using bio-based materials (straw board)
that are locally available has a level of toxicity at almost zero. It can also
be recycled, which has positive impacts on sustaining local resources.
Therefore, it is recommended to use straw board instead of XPS—regardless of
its lower effect in reducing energy consumption.
It is worth mentioning that by
changing only the material, regenerative architecture cannot be achieved, as it
has been clarified that regenerative construction means positive output, rather
than reducing consumption. Therefore, other factors should be dealt with.
Asdrubali et al., 2015.
A review
of unconventional sustainable building insulation materials. Sustainable Materials and
Technologies. Volume (4), pp. 1-17.
Baper, S., Hasan, A.S, Ismail, S., 2013.
Modernization Theory and House Garden Transformation; Erbil City as Case Study.
ARO-The Scientific Journal of Koya
University, Volume 1, pp. 7–13
Berawi, M., 2016. Accelerating Sustainable
Infrastructure Development: Assuring Well-being and Ensuring Environmental
Sustainability. International Journal of
Technology, Volume 7(4), pp. 527–529
Berawi, M., 2017. The Role of Technology
in Achieving Sustainable Development Goals. International
Journal of Technology, Volume 8(3), pp. 362–365
Chileshe et al., 2012.Designing
for Zero Waste: Consumption, Technologies and the Built Environment Chapter: 14.
Publisher: Earthscan from Routledge. First ed. London: Earthscan.
Cole, R.J., 2015. Net-zero and Net-positive
Design: A Question of Value. Building
Research and Information, Volume 43(1), pp. 1–6
Cole, R.J., Fedoruk, L., 2015. Shifting
from Net-zero to Net-positive Energy Buildings. Building Research & Information, Volume 43(1), pp. 111–120
Franzoni E. Materials
selection for green buildings: which tools for engineers and archietcts?
Procedia Engineering Volume (21), pp.883-890.
Hastings, R., Wall, M., 2007. Sustainable
Solar Housing: Strategies and Solutions. First ed. London: Earthscan
International Living Future Institute, 2014. Living Building Challenge 3.0. In Place Petal
Handbook. Canada, pp. 21–35
Joustra, C.M., Yeh, D.H., 2015. Framework
for Net-zero and Net-positive Building Water Cycle Management. Building Research & Information,
Volume 43(1), pp. 121–132
Kubba, S., 2010. LEED Practices, Certificate, and Accreditation Handbook.
Burlington: Elsevier
LEED Reference Guide for Building Design
and Construction, V4, L., 2014. Available Online at www.greenbuildingacademy.org,
Accessed on June 10, 2018
Pless, S., Torcellini, S., 2010. Net-zero Energy Buildings: A Classification
System based on Renewable Energy Supply Options. National Renewable Energy
Laboratory. U.S. Department of Energy
Reed, B., 2007. Shifting from
“Sustainability” to Regeneration. Building
Research & Information, Volume 35(6), pp. 674–680
Reed, B., 2015. The Nature of Positive. Building Research & Information,
Volume 43(1), pp. 7–10
Williams, A., 2014. Regenerative
Sustainability Paradigm for the 2014–2024 Decade of Energy for All and the
Sustainable Development Agenda 2030. Cleaner Production (SV). Available Online
at http://www.elsevier.com/wps/find/journaldiscription .cws_home/30440/,
Accessed on August 12, 2018
Zari, M.P., 2009. Rethinking Our Built Environments: Towards a Sustainable Future.
Wellington, New Zealand: Ministry of Environment
Zari, M.P., Jenkin, S., 2010. Re-defining
Cutting Edge Sustainable Design: From Eco-Efficiency to Regenerative
Development. Sustainable Building Conference (SB10), Edited by: Easton, L.,
& Sharman, W., Wellington, SB10