Published at : 29 Jan 2020
Volume : IJtech
Vol 11, No 1 (2020)
DOI : https://doi.org/10.14716/ijtech.v11i1.1870
Yanuar | Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia |
Made S.G. Putra | Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia |
M. Akbar | Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia |
Muhammad Alief | Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia |
Fatimatuzzahra | Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia |
A new device for air
lubrication called the Winged Air Induction Pipe (WAIP) is studied in the present
work. The device, which consists of an angled hydrofoil, uses the low-pressure
region produced above the hydrofoil as a ship moves forward. The low pressure
drives the atmospheric air into the water at certain velocities when the
pressure is negative compared to atmospheric pressure. A computational fluid
dynamics approach is presented in the study of the effect of the hydrofoil
clearance of the Winged Air Induction Pipe on the drag reduction experienced by
the plate to which the WAIP is attached. The well-known 'volume of fluid' model
and k-w SST (shear stress transport)
turbulence closure model were used in the 2D numerical simulation in ANSYS
Fluent. The numerical simulation was conducted with different hydrofoil
clearance and angle of attack configurations, and the effects of these
parameters on total drag force and drag reduction are reported. The reduction
of drag force is found to increase by about 10% compared to the bare plate
configuration.
Air lubrication; Computational fluid dynamics; Drag reduction; Hydrofoil; Multiphase flow
Methods of
drag reduction using air lubrication are becoming a promising study area due to
the increase in fuel efficiency produced as the result of reduced drag. The
principle of the air lubrication method is to reduce the Reynolds shear stress
in a turbulent boundary layer of the flow (Yanuar
et al., 2012). The magnitude of such stress can be moderately changed by
the dispersed phase for the dilute two-phase flow, but the distribution pattern
remains unchanged (Muste et al., 2009). Kodama et al. (2000) obtained promising results
using air lubrication in the form of microbubbles for drag reduction. It
is well known that the presence of air in the turbulent boundary layer of the
flow leads to drag reduction for two reasons: first, by lowering the average
viscosity and density of the mixture flow, with the mixture of
gas and liquid having a lower density and viscosity compared to the liquid
itself; and second, by decreasing the magnitude of the Reynolds shear stress
through the interaction of the air and liquid.
A numerical study has been made as an alternative to the
experimental approach, as it requires less time,
while still producing accurate results by first conducting validation of similar
experimental results. Various numerical studies have been performed to calculate
Kumagai et al. (2015) developed a new device
called the Winged Air Induction Pipe (WAIP). This consists of an air pipe and
angled hydrofoil with a lower pressure at the upper surface due to the higher
magnitudes of velocity. Previously, numerous studies on the effect of the
hydrofoil on the air-water interface have been made. Duncan
(1981) conducted an experiment on the breaking waves produced by a towed
hydrofoil at constant depth and velocity, finding that the drag associated with
the breaking was proportional to the downslope component of the weight of the
breaking region. The wake survey measurement also showed that the drag
associated with breaking reached more than three times the maximum drag that
could theoretically be obtained with non-breaking waves. Kumagai et al. (2011) found that the hydrofoil
also produced negative pressure that pulled air into the water as the hydrofoil
was positioned near the water surface.
In this work, the WAIP from the previous work
of Kumagai et al. (2015) is studied. The
device produces natural air injection without using an air compressor at
critical velocity Uc, which is defined as:
where g is gravity acceleration, H is the depth of the injection, a is the mean void fraction, CP is the pressure coefficient, and L, hb, CD and q are the hydrofoil chord length,
the air-water mixture layer thickness,
coefficient drag and the hydrofoil angle of attack, respectively. However, Shereena et al. (2014) found that in some cases
hydrofoils develop problems regarding the clearance to the bottom plate where
the is WAIP located.
Following
the previous research of Kumagai et al. (2015),
optimalization of the device is yet to be made. Therefore, it should be noted
that the numerical simulation conducted in this work aims to analyze the
influence of the hydrofoil clearance in the WAIP on the amount of drag
reduction produced and the relationship between the angle of attack and
clearance of the hydrofoil in the device.
The paper has numerically investigated and
optimized a WAIP device for possible use on the hull of the ship, with the
clearance or distance from the hydrofoil’s upper surface to the ship’s hull the
main study parameter. Clearance plays an important role in producing the
appropriate amount of drag reduction. However, in some configurations the flow
characteristic of the device produced more drag due to the depth variation of
the hydrofoil.
The Computational Fluid Dynamics approach to estimate the drag reduction by air lubrication using the Winged Air Induction Pipe (WAIP) was taken and reasonably validated by the experimental work. By using nine configurations to achieve the effect of hydrofoil clearance on drag reduction, it is concluded that the desired magnitude of reduction can be achieved when the contributing parameters, namely the angle of attack and hydrofoil clearance, are optimally chosen. The numerical results were validated with published experimental results. Good agreement between these proves the accuracy of the numerical method employed in the calculation of the air-water interface and the results obtained.
The numerical results reveal that the optimum range is achieved by modification of the parameters using trial and error. The unique flow characteristic produced by the hydrofoil interacts with the Part C in different ways, depending on the clearance between the hydrofoil and the bottom plate of the model. The application of WAIP gives a level of net drag reduction of up to 10%. In future work, 3D simulation is recommended to further study the effect of the size of the induction pipe at different positions and to explore the air-water interface phenomenon in its correlation to the drag reduction produced by the device.
The authors would like to thank Kementerian
Riset, Teknologi dan Pendidikan Tinggi (KEMENRISTEKDIKTI). This work was
supported by Indexed International Publication for Student Final Project
NKB-1791/UN2.R3.1/HKP.05.00/2019.
Duncan, J., 1981. An
Experimental Investigation of Breaking Waves Produced by a Towed Hydrofoil. In: Proceedings of the Royal Society A,
Mathematical and Physical Science, Volume 377(1770), pp. 331–348
Kodama, Y., Kakugawa, A., Takahashi, T.,
Kawashima, H., 2000. Experimental Study on Microbubbles and their Applicability
to Ships. Heat and Fluid Flow, Volume
21 pp. 582–588
Kumagai, I., Kushida, T.,
Oyabu, K., Tasaka, Y., Murai, Y., 2011. Flow Behavior Around a Hydrofoil Close
to a Free Surface. Visualization of
Mechanical Processes, Volume 1(3), pp. 110-120.
Kumagai, I., Nakamura, N.,
Murai, Y., Tasaka, Y., Takeda, Y., 2010. A New Power-saving Device for Air
Bubble Generation: Hydrofoil Air Pump for Ship Drag Reduction. In: International Conference on Ship
Drag Reduction, SMOOTH-SHIPS,
Istanbul, Turkey, pp. 93–102
Kumagai, I., Takahashi, Y., Murai,
Y., 2015. Power-saving Device for air Bubble Generation using a Hydrofoil to
reduce Ship Drag: Theory, Experiments, and Application to Ship. Ocean Engineering, Volume 95, pp.
183–194
Menter, F., 1994. Zonal Two
Equation Eddy Viscosity Turbulence Model for Engineering Applications. AIAA Journal, Volume 32, pp. 1598–1605
Mittink, S., Rachev, S.T.,
Samorodnitsky, G., 2001. The Distribution of Test Statistics for Outlier
Detection in Heavy-tailed Samples. Mathematical
and Computer Modeling, Volume 34(9-11), pp. 1171–1183
Mohanarangam, K., Cheung, S.,
Tu, J., Chen, L., 2009. Numerical Simulation of Microbubble Drag Reduction
using Population Balance Model. Ocean
Engineering, Volume 36, pp. 863–872
Muste, M., Yu, K., Fujita,
I., Ettema, R., 2009. Two-phase Flow Insights into Open-channel Flows with Suspended
Particles of Different Densities. Environ
Fluid Mechanics, Volume 9(2) pp. 161–186
Ockfen, A.E., Matveev, K.I.,
2009. Aerodynamics Characteristic of NACA 4412 Airfoil Section with Flap in Extreme
Ground Effect. International Journal of
Naval Architecture and Ocean Engineering, Volume 1(1) pp. 1–12
Pang, M., Wei, J., Yu, B.,
2014. Numerical Study on Modulation of Microbubble on Turbulence Frictional Drag
in a Horizontal Channel. Ocean
Engineering, Volume 81, pp. 58–68
Shereena, S.G., Vengadesan,
S., Idichandy, V.G., Bhattacharyya, S.K., 2014. CFD Study of Drag Reduction in
Axissymetric Underwater Vehicles using Air Jets. Engineering Application of Computational Fluid Mechanics, Volume
7(2), pp. 193–209
Wang, H., Zhai, Z., 2012. Analyzing Grid Independency and Numerical Viscosity of Computational Fluid. Building and Environment, Volume 52, pp. 107–118
Yanuar, Gunawan, Sunaryo, Jamaluddin, A. 2012. Micro-bubble Drag Reduction on a High Speed Vessel Model. Journal of Marine Science and Application, Volume 11, pp. 301–304