Published at : 29 Apr 2016
Volume : IJtech
Vol 7, No 3 (2016)
DOI : https://doi.org/10.14716/ijtech.v7i3.2820
Oediyani, S., Willyandhika, K., Suharto, 2016. The Effect of Reduction Time and Size Distribution of Mixed Iron Ore with Coconut Shell Charcoal on the Percentage of Metallization by using a Rotary Kiln. International Journal of Technology. Volume 7(3), pp.366-373
Soesaptri Oediyani | Departement of Metallurgy Engineering, Faculty of Engineering, Sultan Ageng Tirtayasa University, Cilegon, Banten 42417, Indonesia |
Kustiarana Willyandhika | Departement of Metallurgy Engineering, Faculty of Engineering, Sultan Ageng Tirtayasa University, Cilegon, Banten 42417, Indonesia |
Suharto | UPT Balai Pengolahan Mineral Lampung (UPT BPML)-LIPI, Jl. Ir Sutami Km.15 Tanjung Bintang Lampung Selatan, Lampung 35361, Indonesia |
Steel is an important material that is widely used and its development has occurred in conjunction with the history of mankind over the last two centuries. In general, the steelmaking process has been done through a combination of a direct reduction process and an Electric Arc Furnace (EAF) or an indirect reduction process and a Basic Oxygen Furnace (BOF). The combination of the steelmaking processes can be adapted to the specific conditions of Indonesian local iron ore. In Indonesia, the raw material reserves of iron and steel making are quite large, but spread over several islands. UPT BPML LIPI in cooperation with the Department of Metallurgical Engineering UNTIRTA conducted research to improve the economic value of the local iron ore in South Lampung Regency. The total amount of primary iron ore resources in South Lampung is estimated to be in the region of 11 million tons. South Lampung Regency iron ore is primary iron ore with a content of pure magnetite and magnetite-containing impurity silica levels ranging from 40-65% Fe in total. South Lampung Regency low-grade iron ore has the potential to be reduced by using a rotary kiln. A rotary kiln is a tool used to reduce low-grade iron ore and produce sponge iron with a high metallization. This process is in accordance with the Indonesian government policies that regulate the minimum value of percentage of sponge iron metallization for export, i.e. 85%. In this research, sponge iron is made of a mixture of Lampung iron ore pellets with coconut shell charcoal as a reduction agent. The composition of coconut shell charcoal is about 20%, which will determine the optimum amount of South Lampung iron ore pellets in the mixture. In addition, during the reduction process, the residence time of pellets in the rotary kiln is observed in order to obtain the optimal percentage of metallization. The method used in this research was the direct reduction process using a pilot-scale rotary kiln with the variables related to residence time (1, 2 and 3 hours) for the pellets and to the diameter of the pellets (-12+8mm and -20+12mm). Meanwhile, the reduction temperature was fixed, i.e. 1100oC. The maximum metallization of sponge iron achieved at a residence time of 3 hours was 99.50% for the average pellet diameter of (-12+8mm).
Coconut shell charcoal, Direct reduction, Percent metallization, Rotary kiln, Sponge iron
Anonymous, 2014. Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia No.1 Tahun 2014 tentang Peningkatan Nilai Tambah Mineral Melalui Kegiatan Pengolahan dan Pemurnian Mineral di Dalam Negeri (in Bahasa)
Arabinda, S., Bidyapati, S., 2011. Alternative Routes to Iron Making. New Delhi: PHI
Deqing, Z., 2010. Direct Reduction Behaviors of Composite Binder Magnetite Pellets in Coal-based Grat-rotary Kiln Process. School of Mineral Processing and Bioengineering, Shangsha, China
Direct Reduction of Iron Ore. Outotec. Available online at http://www.outotec.com/en/About-us/Our-technologies/Direct-and-smelting-reduction/Direct-reduction-of-iron/#tabid-2, accessed on February 4, 2016 at 6.39 p.m
Ishlah, T., 2008. Potensi Bijih Besi dalam Kerangka Pengembangan Klaster Industri Baja. Available online at http://www.bgl.esdm.go.id/publication/index.php/dir/.../503
Kisman, Sutisna, Deddy T., 2005. Inventarisasi dan Evaluasi Mineral Logam di Daerah Kabupaten Lampung Timur dan Selatan, Provinsi Lampung. Available online at http://psdg.bgl.esdm.go.id/index.php?option=com_content&view=article&id=196&Itemid=233
Lubis, Ganie, Surowidjojo, 2014. Indonesia Implements Raw Material Export Restrictions. Available online at http://www.lgsonline.com/pages/g/lgs52ddf7347e933
Pelton, D.A., Christopher, W.B., 2000. Direct Reduced Iron Technology and Economics of Productions and Use. Warrendale: The Iron and Steel Society
Rosenqvst, T., 1983. Principles of Extractive Metallurgy. Singapore: McGraw- Hill
Ross, H.U., 1980. Physical Chemistry: Chapter 3 Direct Reduced Iron Technology and Economics of Productions and Use. Warrendale: The Iron and Steel Society of AIME
Soesaptri, O., 2009. Pemanfaatan Bijih Besi Lokal, Fines Pellet, dan Scale Sebagai Bahan Baku Alternatif Pembuatan Besi Spons dengan Variasi Reduktor. Jurnal Teknika .Volume 5(1), (in Bahasa)
Sun, S.S., 1997. A Study of Kinetics and Mechanism of Iron Ore Reduction in Ore/Coal Composites. Canada: McMaster University
Taein, K., 2007. Characterizing Swelling Behaviour of Iron Oxides during Solid State Reduction for COREX Application and their Implications on Fines Generation. The Iron and Steel Institute of Japan, Volume 47(1), pp. 1590–1598
Winzenried, S., Adhitya, F., 2014. Export Ban on Unprocessed Minerals Effective 12 January 2014- Three-Year Reprieve for Some, But Uncertainty Remains. PwC Indonesia: Energy, Utilites & Mining NewsFlash