• International Journal of Technology (IJTech)
  • Vol 6, No 7 (2015)

Selected Natural Deep Eutectic Solvents for the Extraction of ?-Mangostin from Mangosteen (Garcinia Mangostana L.) Pericarpp

Selected Natural Deep Eutectic Solvents for the Extraction of ?-Mangostin from Mangosteen (Garcinia Mangostana L.) Pericarpp

Title: Selected Natural Deep Eutectic Solvents for the Extraction of ?-Mangostin from Mangosteen (Garcinia Mangostana L.) Pericarpp
Kamarza Mulia, Elsa Krisanti, Felita Terahadi, Sylvania Putri

Corresponding email:


Published at : 30 Dec 2015
Volume : IJtech Vol 6, No 7 (2015)
DOI : https://doi.org/10.14716/ijtech.v6i7.1984

Cite this article as:

Mulia, K., Krisanti, E., Terahadi, F., Putri, S., 2015. Selected Natural Deep Eutectic Solvents for the Extraction of ?-Mangostin from Mangosteen (Garcinia Mangostana L.) Pericarpp. International Journal of Technology. Volume 6(7), pp. 1211-1220



688
Downloads
Kamarza Mulia Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
Elsa Krisanti Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
Felita Terahadi Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
Sylvania Putri Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
Email to Corresponding Author

Abstract
Selected Natural Deep Eutectic Solvents for the Extraction of ?-Mangostin from Mangosteen (Garcinia Mangostana L.) Pericarpp

This research considers the application of Natural Deep Eutectic Solvents (NADES) as green solvents for the extraction of bioactive compounds, mainly ?-mangostin, from the pericarp of mangosteen (Garcinia mangostana L.). Extractions were carried out using NADES consisting of choline chloride, a quarternary ammonium salt, and four hydrogen bond donors: 1,2-propanediol, citric acid, glycerol, and glucose. The highest ?-mangostin extraction yield of 2.6 % (w/w) in dried pericarp was obtained using a mixture of choline chloride and 1,2-propanediol in 1:3 mole ratio. The presence of hydrogen bonding was indicated by the broadening of the OH peak in the infra-red spectra of the NADES used. The polarity and viscosity data of NADES were determined to describe the solubility of a-mangostin. The decomposition and glass transition temperatures were determined in order to study their thermal behavior and stability. The results of this study suggest that NADES made of choline chloride and diol-based hydrogen bond donors are effective for the extraction of bioactive compounds from the mangosteen pericarp.

?-mangostin, Deep eutectic solvent, Extraction, Garcinia mangostana L., NADES

References

Abbott, A.P., Boothby, D., Capper, G., Davies, D.L., Rasheed, R.K., 2004. Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids: Versatile Alternatives to Ionic Liquids. Journal of the American Chemical Society, Volume 126(29), pp. 9142–9147

Ahmad, M., Yamin, B.M., Lazim, A.M., 2012. Preliminary Study on Dispersion of ?-Mangostin in PNIPAM Micro gel System. Malaysian Journal of Analytical Sciences, Volume 16(3), pp. 256–261

Ahmad, M., Yamin, B.M., Lazim, A.M., 2013. A Study on Dispersion and Characterisation of Alpha-mangostin Loaded pH Sensitive Microgel Systems. Chemistry Central Journal, Volume 7(85), pp. 1–6

Aisha, A.F.A, Abu-Salah, K.M., Ismail, Z., Majid, A.M.S.A, 2012a. In Vitro and in Vivo Anti-colon Cancer Effects of Garcinia Mangostana Xanthones Extract. BMC Complementary and Alternative Medocone, Volume 12(104), pp. 1–10

Aisha, A.F.A, Abu-Salah, K.M., Siddiqui, M.J., Ismail, Z., Majid, A.M.S.A, 2012b. Quantification of ?-, ?-and ?-mangostin in Garcinia Mangostana Fruit Rind Extracts by a Reverse Phase High Performance Liquid Chromatography. Journal of Medicinal Plants Research, Volume 6(29), pp. 4526–4534

Akao, Y., Nakagawa, Y., Nozawa, Y., 2008. Anti-cancer Effects of Xanthones from Pericarps of Mangosteen. International Journal of Molecular Sciences, Volume 9(3), pp. 355–370

Angell, C.A, Ansari, Y., Zhao, Z., 2012. Ionic Liquids: Past, Present and Future. Faraday Discussions, Volume 154, pp. 9–27

Azmir, J., Zaidul, I.S.M., Rahman, M.M., Sharif, K.M., Mohamed, A., Sahenab, F., Jahurul, M.H.A., Ghafoor, K., Norulaini, N.A.N., Omar, A.K.M., 2013. Techniques for Extraction of Bioactive Compounds from Plant Materials: A Review. Journal of Food Engineering, Volume 117(4), pp. 426–436

Bi, W., Tian, M., Row, K.H., 2013. Evaluation of Alcohol-based Deep Eutectic Solvent in Extraction and Determination of Flavonoids with Response Surface Methodology Optimization. Journal of Chromatography A, Volume 1285, pp. 22–30

Chemat, F., Vian, M.A., Cravotto, G., 2012. Green Extraction of Natural Products: Concept and Principles. International Journal of Molecular Sciences, Volume 13(7), pp. 8615–8627

Choi, Y.H., Spronsen, J.V., Dai, Y., Verberne, M., Hollmann, F., Arends I.W.C.E, Witkamp, G.J., Verpoorte, R., 2011. Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology? Plant Physiology, Volume 156(4), pp. 1701–1705

Dai, Y., Witkamp, G.J., Verpoorte, R., Choi, Y.H., 2013a. Natural Deep Eutectic Solvents as a New Extraction Media for Phenolic Metabolites in Carthamus tinctorius L. Analytical Chemistry, Volume 85(13), pp. 6272–6278

Dai, Y., Spronsen, J.V., Witkamp, G.J., Verpoorte, R., Choi, Y.H., 2013b. Natural Deep Eutectic Solvents as New Potential Media for Green Technology. Analytica Chimica Acta, Volume 766, pp. 61–68

Earle, M.J., Seddon, K.R., 2000. Ionic Liquids. Green Solvents for the Future. Pure and Applied Chemistry, Volume 72(7), pp. 1391–1398

Earle, M.J., Esperança, J.M.S.S., Gilea, M.A., Lopes, J.N.C., Rebelo, L.P.N., Magee, J.W., Seddon, K.R., Widegren, J.A., 2006. The Distillation and Volatility of Ionic Liquids. Nature, Volume 439, pp. 831–834

Hayyan, M., Hashim, M.A., Hayyan, A., Al-Saadi, M.A., AlNashef, I.M.,

Mirghani, M.E.S., Saheed, O.K., 2013. Are Deep Eutectic Solvents Benign or Toxic? Chemosphere, Volume 90(7), pp. 2193–2195

Kondo, M., Zhang, L., Ji, H., Kou, Y., Ou, B., 2009. Bioavailability and Antioxidant Effects of a Xanthone-Rich Mangosteen (Garcinia mangostana) Product in Humans. Journal of Agricultural and Food Chemistry, Volume 57(19), pp. 8788–8792

Maugeri, Z., Leitner, W., de María, P.D., 2012. Practical Separation of Slcohol-ester Mixtures using Deep-Eutectic-Solvents. Tetrahedron Letters, Volume 53 (51), pp. 6968–6971

Ogihara, W., Aoyama, T., Ohno, H., 2004. Polarity Measurement for Ionic Liquids Containing Dissociable Protons. Chemistry Letters, Volume 33 (11), pp. 1414–1415

Pedraza-Chaverri, J., Rodríguez, N.C., Ibarra, M.A., Rojas, J.M.P., 2008. Medicinal Properties of Mangosteen (Garcinia mangostana). Food Chem Toxicol, Volume 46 (10), pp. 3227–3239

Pena-Pereira, F.P., Namie?nik, J., 2014. Ionic Liquids and Deep Eutectic Mixtures: Sustainable Solvents for Extraction Processes. ChemSusChem, Volume 7 (7), pp. 1784–1800

Pothitirat, W., Gritsanapan, W., 2009. HPLC Quantitative Analysis Method for the Determination of a-Mangostin in Mangosteen Fruit Rind Extract. Thai Journal of Agricultural Science, Volume 42 (1), pp. 7–12

Reichardt, C., 1994. Solvatochromic Dyes as Solvent Polarity Indicators. Chemical Reviews, Volume 94 (8), pp. 2319–2358

Yu, L., Zhao, M., Yang, B., Zhao, Q., Jiang, Y., 2007. Phenolics from Hull of Garcinia mangostana Fruit and Their Antioxidant Activities. Food Chemistry, Volume 104 (1), pp. 176–181