• International Journal of Technology (IJTech)
  • Vol 6, No 6 (2015)

Physics of Strongly-coupled Dopant-atoms in Nanodevices

Physics of Strongly-coupled Dopant-atoms in Nanodevices

Title: Physics of Strongly-coupled Dopant-atoms in Nanodevices
Daniel Moraru, Krzysztof Tyszka, Yuki Takasu, Arup Samanta, Takeshi Mizuno, Ryszard Jablonski, Michiharu Tabe

Corresponding email:


Published at : 30 Dec 2015
Volume : IJtech Vol 6, No 6 (2015)
DOI : https://doi.org/10.14716/ijtech.v6i6.1305

Cite this article as:

Moraru, D., Tyszka, K., Takasu, Y., Samanta, A., Mizuno, T., Jablonski, R., Tabe, M., 2015. Physics of Strongly-coupled Dopant-atoms in Nanodevices. International Journal of Technology. Volume 6(6), pp. 1057-1064



728
Downloads
Daniel Moraru Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Japan
Krzysztof Tyszka Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Japan
Yuki Takasu Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Japan
Arup Samanta Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Japan
Takeshi Mizuno Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Japan
Ryszard Jablonski Institute of Metrology and Biomedical Engineering, Warsaw Univ. of Technology, Sw. A. Boboli 8, Warsaw, Poland
Michiharu Tabe Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Japan
Email to Corresponding Author

Abstract
Physics of Strongly-coupled Dopant-atoms in Nanodevices

In silicon nanoscale transistors, dopant atoms can significantly affect the transport characteristics, in particular at low temperatures. Investigation of coupling between neighboring dopants in such devices is essential in defining the properties for transport. In this work, we present an overview of different regimes of inter-dopant coupling, controlled by doping concentration and a selective doping process. Tunneling-transport spectroscopy can reveal the fundamental physics of isolated dopants in comparison with strongly-coupled dopants. In addition, observations of surface potential for Si nano-transistors can provide direct access to understanding the behavior of coupled dopants.

Dopant atoms, Nanoscale, Quantum dot, Silicon, Tunneling transport

References

Anh, L.T., Moraru, D., Manoharan, M., Tabe, M., Mizuta, H., 2014. The Impacts of Electronic State Hybridization on the Binding Energy of Single Phosphorus Donor Electrons in Extremely Downscaled Silicon Nanostructures. J. Appl. Phys., Volume 116, pp. 063705–1–9

Anwar, M., Nowak, R., Moraru, D., Udhiarto, A., Mizuno, T., Jablonski, R., Tabe, M., 2011. Effect of Electron Injection into Phosphorus Donors in Silicon-on-insulator Channel Observed by Kelvin Probe Force Microscopy. Appl. Phys. Lett., Volume 99, pp. 213101–1–3

Augke, R., Eberhardt, W., Single, C., Prins, F.E., Wharam, D.A., Kern, D.P., 2000. Doped Silicon Single Electron Transistors with Single Island Characteristics. Appl. Phys. Lett., Volume 76, pp. 2065–2067

Evans, G.J., Mizuta, H., Ahmed, H., 2001. Modeling of Structural and Threshold Voltage Characteristics of Randomly Doped Silicon Nanowires in the Coulomb-blockade Regime. Jpn. J. Appl. Phys., Volume 40, pp. 5837–5840

Fuechsle, M., Miwa, J.A., Mahapatra, S., Ryu, H., Lee, S., Warschkow, O., Hollenberg, L.C.L., Klimeck, G., Simmons, M.Y., 2012. A Single-atom Transistor. Nature Nanotech., Volume 7, pp. 242–246

Hamid, E., Moraru, D., Kuzuya, Y., Mizuno, T., Anh, L.T., Mizuta, H., Tabe, M., 2013. Electron-tunneling Operation of Single-donor-atom Transistors at Elevated Temperatures. Phys. Rev. B, Volume 87, pp. 085420–1–5

Hamid, E., Moraru, D., Tarido, J.C., Miki, S., Mizuno, T., Tabe, M., 2010. Single-electron Transfer between Two Donors in Nanoscale Thin Silicon-on-insulator Field-effect Transistors. Appl. Phys. Lett., Volume 97, pp. 262101–1–3

Hollenberg, L.C.L., Dzurak, A.S., Wellard, C., Hamilton, A.R., Reilly, D.J., Milburn, G.J., Clark, R.G., 2004. Charge-based Quantum Computing using Single Donors in Semiconductors. Phys. Rev. B, Volume 69, pp. 113301–1–4

Kane, B.E., 1998. A Silicon-based Nuclear Spin Quantum Computer. Nature, Volume 393, pp. 133–137

Kohn, W., Luttinger, J.M., 1955. Theory of Donor States in Silicon. Phys. Rev., Volume 98, pp. 915–922

Mizuno, T., Okamura, J., Toriumi, A., 1994. Experimental Study of Threshold Voltage Fluctuation due to Statistical Variation of Channel Dopant Number in MOSFETs. IEEE Trans. Electron. Devices, Volume 41, pp. 2216–2221

Moraru, D., Ligowski, M., Yokoi, K., Mizuno, T., Tabe, M., 2009. Single-electron Transfer by Inter-dopant Coupling Tuning in Doped Nanowire Silicon-on-insulator Field-effect Transistors. Appl. Phys. Express, Volume 2, pp. 071201–1–3

Moraru, D., Ono, Y., Inokawa, H., Tabe, M., 2007. Quantized Electron Transfer through Random Multiple Tunnel Junctions in Phosphorus-doped Silicon Nanowires. Phys. Rev. B, Volume 76, pp. 075332–1–5

Moraru, D., Samanta, A., Anh, L.T., Mizuno, T., Mizuta, H., Tabe, M., 2014. Transport Spectroscopy of Coupled Donors in Silicon Nano-transistors. Sci. Rep., Volume 4, pp. 6219–1–6

Moraru, D., Udhiarto, A., Anwar, M. Nowak, R., Jablonski, R., Hamid, E., Tarido, J.C., Mizuno, T., Tabe, M., 2011. Atom Devices based on Single Dopants in Silicon Nanostructures. Nanoscale Res. Lett., Volume 6, pp. 479–1–9

Ono, Y., Nishiguchi, K., Fujiwara, A., Yamaguchi, H., Inokawa, H., Takahashi, Y., 2007. Conductance Modulation by Individual Acceptors in Si Nanoscale Field-effect Transistors. Appl. Phys. Lett., Volume 90, pp. 102106–1–3

Pierre, M., Wacquez, R., Jehl, X., Sanquer, M. Vinet, M., Cueto, O., 2010. Single-donor Ionization Energies in a Nanoscale CMOS Channel. Nature Nanotech., Volume 5, pp. 133–137

Prati, E., Hori, M., Guagliardo, F., Ferrari, G., Shinada, T., 2012. Anderson-Mott Transition in Arrays of a Few Dopant Atoms in a Silicon Transistor. Nature Nanotech., Volume 7, pp. 443–447

Ramdas, A.K., Rodriguez, S., 1981. Spectroscopy of the Solid-state Analogues of the Hydrogen Atom: Donors and Acceptors in Semiconductors. Rep. Prog. Phys., Volume 44, pp. 1297–1387

Sellier, H., Lansbergen, G.P., Caro, J., Collaert, N., Ferain, I., Jurczak, M., Biesemans, S., Rogge, S., 2006. Transport Spectroscopy of a Single Dopant in a Gated Silicon Nanowire. Phys. Rev. Lett., Volume 97, pp. 206805–1–4

Shinada, T., Okamoto, S., Konayashi, T., Ohdomari, I., 2005. Enhancing Semiconductor Device Performance using Ordered Dopant Arrays. Nature, Volume 437, pp. 1128–1131

Smith, R.A., Ahmed, H., 1997. Gate Controlled Coulomb Blockade Effects in the Conduction of a Silicon Quantum Wire. J. Appl. Phys., Volume 81, pp. 2699–2703

Tabe, M., Moraru, D., Ligowski, M., Anwar, M., Jablonski, R., Ono, Y., Mizuno, T., 2010a. Single-electron Transport through Single Dopants in a Dopant-rich Environment. Phys. Rev. Lett., Volume 105, pp. 016803–1–4

Tabe, M., Moraru, D., Ligowski, M., Anwar, M., Yokoi, K., Jablonski, R., Mizuno, T., 2010b. Observation of Discrete Dopant Potential and its Application to Si Single-electron Devices. Thin Solid Films, Volume 518, pp. S38–S43

Tabe, M., Udhiarto, A., Moraru, D., Mizuno, T., 2011. Single-photon Detection by Si Single-electron FETs. Phys. Stat. Sol. A, Volume 208, pp. 646–651

Thomas, G.A., Capizzi, M., DeRosa, F., Bhatt, R.N., Rice, T.M., 1981. Optical Study of Interacting Donors in Semiconductors. Phys. Rev. B, Volume 23, pp. 5472–5494

Tilke, A., Blick, R.H., Lorenz, H., Kotthaus, J.P., 2001. Single-electron Tunneling in Highly Doped Silicon Nanowires in a Dual-gate Configuration. J. Appl. Phys., Volume 89, pp. 8159–8162

Tyszka, K., Moraru, D., Samanta, A., Mizuno, T., Jab?o?ski, R., Tabe, M., 2015a. Effect of Selective Doping on the Spatial Dispersion of Donor-induced Quantum Dots in Si Nanoscale Transistors. Appl. Phys. Express, Volume 8, pp. 094202–1–4

Tyszka, K., Moraru, D., Samanta, A., Mizuno, T., Jab?o?ski, R., Tabe, M., 2015b. Comparative Study of Donor-induced Quantum Dots in Si Nano-channels by Single-electron Transport Characterization and Kelvin Probe Force Microscopy. J. Appl. Phys., Volume 117, pp. 244307–1–6

Udhiarto, A., Moraru, D., Mizuno, T., Tabe, M., 2011. Trapping of a Photoexcited Electron by a Donor in Nanometer-scale Phosphorus-doped Silicon-on-insulator Field-effect Transistors. Appl. Phys. Lett., Volume 99, pp. 113108–1–3

Wong, H.S., Taur, Y., 1998. Discrete Random Dopant Distribution Effects in Nanometer-scale MOSFETs. Microelectron. Reliab., Volume 38, pp. 1447–1456

Zwanenburg, F.A., Dzurak, A.S., Morello, A., Simmons, M.Y., Hollenberg, L.C.L., Klimeck, G., Rogge, S., Coppersmith, S.A., Eriksson, M.A., 2013. Silicon Quantum Electronics. Rev. Mod. Phys., Volume 85, pp. 961–1019